I. Giannakis, F. Tosti, Livia Lantini, Daniel Egyir, A. Alani
{"title":"Signal Processing For Tree-Trunk Investigation Using Ground Penetrating Radar","authors":"I. Giannakis, F. Tosti, Livia Lantini, Daniel Egyir, A. Alani","doi":"10.3997/2214-4609.201902601","DOIUrl":null,"url":null,"abstract":"Summary Invasive fungi diseases are considered one the biggest threats for the ash and oak forests in United Kingdom. To that extend, Ground Penetrating Radar (GPR) can provide a powerful diagnostic tool for assessing the health status of tree trunks based on their internal dielectric distribution. GPR acquisitions in tree-trunks is a unique problem that can not be approached with traditional GPR processing approaches. Typical interpretation tools like hyperbola fitting and migration should be adjusted and fine-tuned in order to be applicable for irregular measurements in a closed curve. The purpose of this paper is to provide GPR practitioners with a set of interpretation tools that can be applied in the field using commercial GPR antennas. In that context, a novel processing framework is presented that is fine-tuned for the current problem. The suggested scheme is successfully tested using both numerical and real data indicating the capabilities of GPR as a diagnostic tool for early detection of tree diseases.","PeriodicalId":162237,"journal":{"name":"10th International Workshop on Advanced Ground Penetrating Radar","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"10th International Workshop on Advanced Ground Penetrating Radar","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201902601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Summary Invasive fungi diseases are considered one the biggest threats for the ash and oak forests in United Kingdom. To that extend, Ground Penetrating Radar (GPR) can provide a powerful diagnostic tool for assessing the health status of tree trunks based on their internal dielectric distribution. GPR acquisitions in tree-trunks is a unique problem that can not be approached with traditional GPR processing approaches. Typical interpretation tools like hyperbola fitting and migration should be adjusted and fine-tuned in order to be applicable for irregular measurements in a closed curve. The purpose of this paper is to provide GPR practitioners with a set of interpretation tools that can be applied in the field using commercial GPR antennas. In that context, a novel processing framework is presented that is fine-tuned for the current problem. The suggested scheme is successfully tested using both numerical and real data indicating the capabilities of GPR as a diagnostic tool for early detection of tree diseases.