Unsupervised Hyperbolic Metric Learning

Jiexi Yan, Lei Luo, Cheng Deng, Heng Huang
{"title":"Unsupervised Hyperbolic Metric Learning","authors":"Jiexi Yan, Lei Luo, Cheng Deng, Heng Huang","doi":"10.1109/CVPR46437.2021.01228","DOIUrl":null,"url":null,"abstract":"Learning feature embedding directly from images without any human supervision is a very challenging and essential task in the field of computer vision and machine learning. Following the paradigm in supervised manner, most existing unsupervised metric learning approaches mainly focus on binary similarity in Euclidean space. However, these methods cannot achieve promising performance in many practical applications, where the manual information is lacking and data exhibits non-Euclidean latent anatomy. To address this limitation, we propose an Unsupervised Hyperbolic Metric Learning method with Hierarchical Similarity. It considers the natural hierarchies of data by taking advantage of Hyperbolic metric learning and hierarchical clustering, which can effectively excavate richer similarity information beyond binary in modeling. More importantly, we design a new loss function to capture the hierarchical similarity among samples to enhance the stability of the proposed method. Extensive experimental results on benchmark datasets demonstrate that our method achieves state-of-the-art performance compared with current unsupervised deep metric learning approaches.","PeriodicalId":339646,"journal":{"name":"2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR46437.2021.01228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

Learning feature embedding directly from images without any human supervision is a very challenging and essential task in the field of computer vision and machine learning. Following the paradigm in supervised manner, most existing unsupervised metric learning approaches mainly focus on binary similarity in Euclidean space. However, these methods cannot achieve promising performance in many practical applications, where the manual information is lacking and data exhibits non-Euclidean latent anatomy. To address this limitation, we propose an Unsupervised Hyperbolic Metric Learning method with Hierarchical Similarity. It considers the natural hierarchies of data by taking advantage of Hyperbolic metric learning and hierarchical clustering, which can effectively excavate richer similarity information beyond binary in modeling. More importantly, we design a new loss function to capture the hierarchical similarity among samples to enhance the stability of the proposed method. Extensive experimental results on benchmark datasets demonstrate that our method achieves state-of-the-art performance compared with current unsupervised deep metric learning approaches.
无监督双曲度量学习
在计算机视觉和机器学习领域,直接从图像中学习特征嵌入是一项非常具有挑战性和必要的任务。现有的无监督度量学习方法大多遵循有监督的范式,主要关注欧几里得空间中的二元相似度。然而,这些方法在许多实际应用中,由于缺乏手工信息和数据呈现非欧几里得潜解剖,不能达到令人满意的性能。为了解决这一限制,我们提出了一种具有层次相似性的无监督双曲度量学习方法。利用双曲度量学习和层次聚类,考虑数据的自然层次,在建模中可以有效挖掘出比二值化更丰富的相似信息。更重要的是,我们设计了一个新的损失函数来捕获样本之间的层次相似性,以提高所提方法的稳定性。在基准数据集上的大量实验结果表明,与当前的无监督深度度量学习方法相比,我们的方法达到了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信