CSM-based feature extraction for degraded machine printed character recognition

A. Namane, M. Maamoun, E. Soubari, P. Meyrueis
{"title":"CSM-based feature extraction for degraded machine printed character recognition","authors":"A. Namane, M. Maamoun, E. Soubari, P. Meyrueis","doi":"10.1109/UKRICIS.2010.5898105","DOIUrl":null,"url":null,"abstract":"This paper presents an OCR method for degraded character recognition applied to typewritten document produced by typesetting machine. The complementary similarity measure method (CSM) is a well known classification method and widely applied in the area of character recognition. In this work the CSM method is not only used as a classifier but also introduced as a feature extractor, and applied to degraded character recognition. The resulted CSM feature vector is used to train a multi layered perceptron (MLP). The use of the CSM as a feature extractor tends to boost the MLP and makes it very powerful and very well suited for rejection. Experimental results on n typewritten A4 page documents show the ability of the model to yield relevant and robust recognition on poor quality printed document characters.","PeriodicalId":359942,"journal":{"name":"2010 IEEE 9th International Conference on Cyberntic Intelligent Systems","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 9th International Conference on Cyberntic Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UKRICIS.2010.5898105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents an OCR method for degraded character recognition applied to typewritten document produced by typesetting machine. The complementary similarity measure method (CSM) is a well known classification method and widely applied in the area of character recognition. In this work the CSM method is not only used as a classifier but also introduced as a feature extractor, and applied to degraded character recognition. The resulted CSM feature vector is used to train a multi layered perceptron (MLP). The use of the CSM as a feature extractor tends to boost the MLP and makes it very powerful and very well suited for rejection. Experimental results on n typewritten A4 page documents show the ability of the model to yield relevant and robust recognition on poor quality printed document characters.
基于csm的退化机器打印字符识别特征提取
本文提出了一种用于排字机打印文档的退化字符识别的OCR方法。互补相似度度量方法(CSM)是一种著名的分类方法,在字符识别领域得到了广泛的应用。本文不仅将CSM方法作为分类器,还将其作为特征提取器,并应用于退化字符识别。得到的CSM特征向量用于训练多层感知器(MLP)。使用CSM作为特征提取器倾向于提高MLP,使其非常强大,非常适合于拒绝。在n个打印A4页文档上的实验结果表明,该模型能够对质量较差的打印文档字符进行相关且鲁棒的识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信