The application of spectral invariants for discrimination of crops using CHRIS-PROBA data

P. Carmona, M. Schull, Y. Knyazikhin, F. Pla
{"title":"The application of spectral invariants for discrimination of crops using CHRIS-PROBA data","authors":"P. Carmona, M. Schull, Y. Knyazikhin, F. Pla","doi":"10.1109/WHISPERS.2010.5594879","DOIUrl":null,"url":null,"abstract":"Numerous studies have demonstrated the ability of hyper-spectral data to discriminate crop types, however most methods rely on empirical data and are therefore site specific. In this brief proceeding we provide a physically based approach for separation of crop types using multiangle hyperspectral data. We use the radiative transfer theory of spectral invariants which allows for the parameterization of the canopy reflectance into two spectrally invariant and structurally varying parameters — recollision and escape probabilities. The spectral invariant parameters are retrieved from the CHRIS/PROBA multiangle hyperspectral sensor. We present the spectral invariant parameters in spectral invariant space. The horizontal axis provides information about macro scale features such as plant shape and size as well as ground cover. The vertical axis provides information about microscale features such as leaf density as well as portion of sunlit to shaded leaves. These features allow for the natural separation of crops. In addition we illustrate the potential for further separation of crop types based on angular information. Results suggest that multiangle information is important for canopies with similar structural features in the nadir direction.","PeriodicalId":193944,"journal":{"name":"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2010.5594879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Numerous studies have demonstrated the ability of hyper-spectral data to discriminate crop types, however most methods rely on empirical data and are therefore site specific. In this brief proceeding we provide a physically based approach for separation of crop types using multiangle hyperspectral data. We use the radiative transfer theory of spectral invariants which allows for the parameterization of the canopy reflectance into two spectrally invariant and structurally varying parameters — recollision and escape probabilities. The spectral invariant parameters are retrieved from the CHRIS/PROBA multiangle hyperspectral sensor. We present the spectral invariant parameters in spectral invariant space. The horizontal axis provides information about macro scale features such as plant shape and size as well as ground cover. The vertical axis provides information about microscale features such as leaf density as well as portion of sunlit to shaded leaves. These features allow for the natural separation of crops. In addition we illustrate the potential for further separation of crop types based on angular information. Results suggest that multiangle information is important for canopies with similar structural features in the nadir direction.
光谱不变量在CHRIS-PROBA数据作物识别中的应用
许多研究已经证明了高光谱数据区分作物类型的能力,但是大多数方法依赖于经验数据,因此是特定于地点的。在这个简短的程序中,我们提供了一个基于物理的方法分离作物类型使用多角度高光谱数据。我们使用光谱不变量的辐射传递理论,该理论允许将冠层反射率参数化为两个光谱不变和结构变化的参数-回忆和逃逸概率。从CHRIS/PROBA多角度高光谱传感器中提取光谱不变参数。给出了谱不变空间中的谱不变参数。横轴提供宏观尺度特征的信息,如植物的形状和大小以及地面覆盖。纵轴提供了关于微尺度特征的信息,如叶片密度以及阳光照射到遮荫叶片的部分。这些特性允许作物的自然分离。此外,我们还说明了基于角度信息进一步分离作物类型的可能性。研究结果表明,多角度信息对具有相似结构特征的冠层具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信