Inverse Test Confidence Intervals for Turning-Points: A Demonstration with Higher Order Polynomials

J. Lye, J. Hirschberg
{"title":"Inverse Test Confidence Intervals for Turning-Points: A Demonstration with Higher Order Polynomials","authors":"J. Lye, J. Hirschberg","doi":"10.1108/S0731-9053(2012)0000030008","DOIUrl":null,"url":null,"abstract":"In this chapter we demonstrate the construction of inverse test confidence intervals for the turning-points in estimated nonlinear relationships by the use of the marginal or first derivative function. First, we outline the inverse test confidence interval approach. Then we examine the relationship between the traditional confidence intervals based on the Wald test for the turning-points for a cubic, a quartic, and fractional polynomials estimated via regression analysis and the inverse test intervals. We show that the confidence interval plots of the marginal function can be used to estimate confidence intervals for the turning-points that are equivalent to the inverse test. We also provide a method for the interpretation of the confidence intervals for the second derivative function to draw inferences for the characteristics of the turning-point. \n \nThis method is applied to the examination of the turning-points found when estimating a quartic and a fractional polynomial from data used for the estimation of an Environmental Kuznets Curve. The Stata do files used to generate these examples are listed in Appendix A along with the data.","PeriodicalId":438593,"journal":{"name":"ERN: Econometric Software (Topic)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Econometric Software (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/S0731-9053(2012)0000030008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this chapter we demonstrate the construction of inverse test confidence intervals for the turning-points in estimated nonlinear relationships by the use of the marginal or first derivative function. First, we outline the inverse test confidence interval approach. Then we examine the relationship between the traditional confidence intervals based on the Wald test for the turning-points for a cubic, a quartic, and fractional polynomials estimated via regression analysis and the inverse test intervals. We show that the confidence interval plots of the marginal function can be used to estimate confidence intervals for the turning-points that are equivalent to the inverse test. We also provide a method for the interpretation of the confidence intervals for the second derivative function to draw inferences for the characteristics of the turning-point. This method is applied to the examination of the turning-points found when estimating a quartic and a fractional polynomial from data used for the estimation of an Environmental Kuznets Curve. The Stata do files used to generate these examples are listed in Appendix A along with the data.
拐点的逆检验置信区间:一个高阶多项式的证明
在这一章中,我们演示了利用边际函数或一阶导数函数构造估计的非线性关系中拐点的逆检验置信区间。首先,我们概述了逆检验置信区间方法。然后,我们研究了基于Wald检验的传统置信区间与逆检验区间之间的关系,这些置信区间是通过回归分析估计的三次多项式、四次多项式和分数阶多项式的拐点。我们证明了边际函数的置信区间图可以用来估计拐点的置信区间,这些拐点等价于逆检验。我们还提供了一种解释二阶导数函数的置信区间的方法,以推断拐点的特征。该方法适用于从用于估计环境库兹涅茨曲线的数据中估计四次多项式和分数多项式时发现的转折点的检查。用于生成这些示例的Stata do文件与数据一起列在附录A中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信