Subspace Gaussian Mixture Models for vectorial HMM-states representation

M. Bouallegue, D. Matrouf, Mickael Rouvier, G. Linarès
{"title":"Subspace Gaussian Mixture Models for vectorial HMM-states representation","authors":"M. Bouallegue, D. Matrouf, Mickael Rouvier, G. Linarès","doi":"10.1109/ASRU.2011.6163984","DOIUrl":null,"url":null,"abstract":"In this paper we present a vectorial representation of the HMM states that is inspired by the Subspace Gaussian Mixture Models paradigm (SGMM). This vectorial representation of states will make possible a large number of applications, such as HMM-states clustering and graphical visualization. Thanks to this representation, the Hidden Markov Model (HMM) states can be seen as sets of points in multi-dimensional space and then can be studied using statistical data analysis techniques. In this paper, we show how this representation can be obtained and used for tying states of an HHM-based automatic speech recognition system without any use of linguistic or phonetic knowledge. In experiments, this approach achieves significant and stable gain, while conserving the classical approach based on decision trees. We also show how it can be used for graphical visualization, which can be useful in other domains like phonetics or clinical phonetics.","PeriodicalId":338241,"journal":{"name":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","volume":"4498 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2011.6163984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper we present a vectorial representation of the HMM states that is inspired by the Subspace Gaussian Mixture Models paradigm (SGMM). This vectorial representation of states will make possible a large number of applications, such as HMM-states clustering and graphical visualization. Thanks to this representation, the Hidden Markov Model (HMM) states can be seen as sets of points in multi-dimensional space and then can be studied using statistical data analysis techniques. In this paper, we show how this representation can be obtained and used for tying states of an HHM-based automatic speech recognition system without any use of linguistic or phonetic knowledge. In experiments, this approach achieves significant and stable gain, while conserving the classical approach based on decision trees. We also show how it can be used for graphical visualization, which can be useful in other domains like phonetics or clinical phonetics.
向量hmm状态表示的子空间高斯混合模型
本文在子空间高斯混合模型范式(SGMM)的启发下,提出了HMM状态的向量表示。这种状态的向量表示将使大量应用程序成为可能,例如hmm状态聚类和图形可视化。由于这种表示,隐马尔可夫模型(HMM)状态可以被视为多维空间中的点集,然后可以使用统计数据分析技术进行研究。在本文中,我们展示了如何在不使用任何语言或语音知识的情况下获得这种表示并将其用于基于hmm的自动语音识别系统的绑定状态。在实验中,该方法在保留经典决策树方法的基础上,取得了显著且稳定的增益。我们还展示了如何将它用于图形可视化,这在语音学或临床语音学等其他领域也很有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信