Neural network study of the nucleon axial form-factor

L. Alvarez-Ruso, K. Graczyk, E. Sala
{"title":"Neural network study of the nucleon axial form-factor","authors":"L. Alvarez-Ruso, K. Graczyk, E. Sala","doi":"10.22323/1.341.0101","DOIUrl":null,"url":null,"abstract":"We have performed the first Bayesian neural-network analysis of neutrino-deuteron scattering data. The nucleon axial form factor has been extracted from quasielastic scattering data collected by the Argonne National Laboratory (ANL) bubble chamber experiment using a model-independent parametrization. The results are in agreement with previous determinations only when the low $0.05 < Q^2 < 0.10$~GeV$^2$ region is excluded from the analysis. This suggests that corrections from the deuteron structure may play a crucial role at low $Q^2$, although experimental errors in this kinematic region could have also been underestimated. With new and more precise measurements of neutrino-induced quasielastic scattering on hydrogen and deuterium, the present framework would be readily applicable to unravel the axial structure of the nucleon.","PeriodicalId":368027,"journal":{"name":"Proceedings of The 20th International Workshop on Neutrinos — PoS(NuFACT2018)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The 20th International Workshop on Neutrinos — PoS(NuFACT2018)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.341.0101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We have performed the first Bayesian neural-network analysis of neutrino-deuteron scattering data. The nucleon axial form factor has been extracted from quasielastic scattering data collected by the Argonne National Laboratory (ANL) bubble chamber experiment using a model-independent parametrization. The results are in agreement with previous determinations only when the low $0.05 < Q^2 < 0.10$~GeV$^2$ region is excluded from the analysis. This suggests that corrections from the deuteron structure may play a crucial role at low $Q^2$, although experimental errors in this kinematic region could have also been underestimated. With new and more precise measurements of neutrino-induced quasielastic scattering on hydrogen and deuterium, the present framework would be readily applicable to unravel the axial structure of the nucleon.
核子轴向形状因子的神经网络研究
我们对中微子-氘核散射数据进行了首次贝叶斯神经网络分析。利用与模型无关的参数化方法,从美国阿贡国家实验室(ANL)气泡室实验收集的准弹性散射数据中提取了核子轴向形状因子。只有当从分析中排除低$0.05 < Q^2 < 0.10$~GeV$^2$区域时,结果才与先前的测定一致。这表明来自氘核结构的修正可能在低Q^2$处起关键作用,尽管该运动区域的实验误差也可能被低估了。随着对中微子在氢和氘上引起的准弹性散射的新的和更精确的测量,目前的框架将很容易适用于解开核子的轴向结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信