CUDA-Parttree: A Multiple Sequence Alignment Parallel Strategy in GPU

Caina Razzolini, A. Melo
{"title":"CUDA-Parttree: A Multiple Sequence Alignment Parallel Strategy in GPU","authors":"Caina Razzolini, A. Melo","doi":"10.5753/wscad.2019.8662","DOIUrl":null,"url":null,"abstract":"In this paper, we propose and evaluate CUDA-Parttree, a parallel strategy that executes the first phase of the MAFFT Parttree Multiple Sequence Alignment tool (distance matrix calculation with 6mers) on GPU. When compared to Parttree, CUDA-Parttree obtained a speedup of 6.10x on the distance matrix calculation for the Cyclodex gly tran (50, 280 sequences) set, reducing the execution time from 33.94s to 5.57s. Including data conversion and movement to/from the GPU, the speedup was 2.59x. With the sequence set Syn 100000 (100, 000 sequences), a speedup of 4.46x was attained, reducing execution time from 209.54s to 47.00s.","PeriodicalId":117711,"journal":{"name":"Anais do Simpósio em Sistemas Computacionais de Alto Desempenho (WSCAD)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do Simpósio em Sistemas Computacionais de Alto Desempenho (WSCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/wscad.2019.8662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we propose and evaluate CUDA-Parttree, a parallel strategy that executes the first phase of the MAFFT Parttree Multiple Sequence Alignment tool (distance matrix calculation with 6mers) on GPU. When compared to Parttree, CUDA-Parttree obtained a speedup of 6.10x on the distance matrix calculation for the Cyclodex gly tran (50, 280 sequences) set, reducing the execution time from 33.94s to 5.57s. Including data conversion and movement to/from the GPU, the speedup was 2.59x. With the sequence set Syn 100000 (100, 000 sequences), a speedup of 4.46x was attained, reducing execution time from 209.54s to 47.00s.
CUDA-Parttree: GPU中的多序列对齐并行策略
在本文中,我们提出并评估了CUDA-Parttree,这是一种并行策略,它在GPU上执行matfft Parttree多序列对齐工具的第一阶段(使用6mers进行距离矩阵计算)。与Parttree相比,CUDA-Parttree在Cyclodex gly tran(50,280个序列)集的距离矩阵计算上获得了6.10倍的加速,将执行时间从33.94s减少到5.57s。包括数据转换和GPU之间的移动,加速速度为2.59倍。将序列设置为Syn 100000(100,000个序列),可以获得4.46倍的加速,将执行时间从209.54秒减少到47.00秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信