{"title":"Impact Analysis of a Composite Armor System","authors":"S. Alam, M. Saquib","doi":"10.1115/imece2019-11748","DOIUrl":null,"url":null,"abstract":"\n Present day demands composite material with even lighter weight and higher strength for using in aerospace, automobile and defense industries. Due to posing significantly weight saving and higher stiffness attribute, use of sandwich composite structure is the demand of the time. Impact analysis of sandwich composite armor system is necessary to design and develop new armor for defense sectors.\n The goal of this study is to design, model and analyze the dynamic response of the composite armor system in terms of residual velocity and energy absorption capacity.\n The design parameters are investigated for different fiber reinforced polymers (High tensile strength Carbon/epoxy, Carbon Fiber/Carbon Nanotube reinforced polymers) as top and bottom skin, with an Aluminum Alloy 7039 corrugated core structure and square prismoid assembled Ceramic (SiC) core centerpieces at different velocities (50 m/s, 100 m/s, 200 m/s, 400 m/s).\n This non-linear explicit dynamic study is performed using commercial software ABAQUS CAE 2017. Best combination for the composite armor system is suggested based on the results.","PeriodicalId":375383,"journal":{"name":"Volume 9: Mechanics of Solids, Structures, and Fluids","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Mechanics of Solids, Structures, and Fluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2019-11748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Present day demands composite material with even lighter weight and higher strength for using in aerospace, automobile and defense industries. Due to posing significantly weight saving and higher stiffness attribute, use of sandwich composite structure is the demand of the time. Impact analysis of sandwich composite armor system is necessary to design and develop new armor for defense sectors.
The goal of this study is to design, model and analyze the dynamic response of the composite armor system in terms of residual velocity and energy absorption capacity.
The design parameters are investigated for different fiber reinforced polymers (High tensile strength Carbon/epoxy, Carbon Fiber/Carbon Nanotube reinforced polymers) as top and bottom skin, with an Aluminum Alloy 7039 corrugated core structure and square prismoid assembled Ceramic (SiC) core centerpieces at different velocities (50 m/s, 100 m/s, 200 m/s, 400 m/s).
This non-linear explicit dynamic study is performed using commercial software ABAQUS CAE 2017. Best combination for the composite armor system is suggested based on the results.