Sven Peldszus, Géza Kulcsár, Malte Lochau, Sandro Schulze
{"title":"Incremental Co-Evolution of Java Programs based on Bidirectional Graph Transformation","authors":"Sven Peldszus, Géza Kulcsár, Malte Lochau, Sandro Schulze","doi":"10.1145/2807426.2807438","DOIUrl":null,"url":null,"abstract":"Modern Java IDE aim at assisting object-oriented software development workflows with continuously interleaved co-evolution steps of program editing and program refactoring. Program editing usually comprises manually performed program changes applied by a programmer at source code level. In contrast, refactorings consist of behavior-preserving program restructuring rules with complex preconditions, usually formulated over an appropriate program abstraction. To integrate both steps into a comprehensive program evolution framework, we present a graph-based approach for incremental co-evolution of Java programs. Our approach is based on a concise graph-based representation of Java programs by means of a reduced abstract syntax tree, augmented with additional cross-tree edges denoting crucial semantic information. On this basis, a precise formal specification of object-oriented program refactorings can be defined in terms of endogenous graph-transformation rules. In addition, we use Triple Graph Grammars (TGG) to define exogenous bidirectional graph transformation rules for automated incremental synchronization between a program graph and the corresponding source code. Our implementation relies on the graph-transformation engine eMoflon and currently supports the Java refactorings Pull Up Method and Create Superclass.","PeriodicalId":104024,"journal":{"name":"Proceedings of the Principles and Practices of Programming on The Java Platform","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Principles and Practices of Programming on The Java Platform","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2807426.2807438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Modern Java IDE aim at assisting object-oriented software development workflows with continuously interleaved co-evolution steps of program editing and program refactoring. Program editing usually comprises manually performed program changes applied by a programmer at source code level. In contrast, refactorings consist of behavior-preserving program restructuring rules with complex preconditions, usually formulated over an appropriate program abstraction. To integrate both steps into a comprehensive program evolution framework, we present a graph-based approach for incremental co-evolution of Java programs. Our approach is based on a concise graph-based representation of Java programs by means of a reduced abstract syntax tree, augmented with additional cross-tree edges denoting crucial semantic information. On this basis, a precise formal specification of object-oriented program refactorings can be defined in terms of endogenous graph-transformation rules. In addition, we use Triple Graph Grammars (TGG) to define exogenous bidirectional graph transformation rules for automated incremental synchronization between a program graph and the corresponding source code. Our implementation relies on the graph-transformation engine eMoflon and currently supports the Java refactorings Pull Up Method and Create Superclass.