Making Human Connectome Faster: GPU Acceleration of Brain Network Analysis

Di Wu, Tianji Wu, Yi Shan, Yu Wang, Yong He, Ningyi Xu, Huazhong Yang
{"title":"Making Human Connectome Faster: GPU Acceleration of Brain Network Analysis","authors":"Di Wu, Tianji Wu, Yi Shan, Yu Wang, Yong He, Ningyi Xu, Huazhong Yang","doi":"10.1109/ICPADS.2010.105","DOIUrl":null,"url":null,"abstract":"The research on complex Brain Networks plays a vital role in understanding the connectivity patterns of the human brain and disease-related alterations. Recent studies have suggested a noninvasive way to model and analyze human brain networks by using multi-modal imaging and graph theoretical approaches. Both the construction and analysis of the Brain Networks require tremendous computation. As a result, most current studies of the Brain Networks are focused on a coarse scale based on Brain Regions. Networks on this scale usually consist around 100 nodes. The more accurate and meticulous voxel-base Brain Networks, on the other hand, may consist 20K to 100K nodes. In response to the difficulties of analyzing large-scale networks, we propose an acceleration framework for voxel-base Brain Network Analysis based on Graphics Processing Unit (GPU). Our GPU implementations of Brain Network construction and modularity achieve 24x and 80x speedup respectively, compared with single-core CPU. Our work makes the processing time affordable to analyze multiple large-scale Brain Networks.","PeriodicalId":365914,"journal":{"name":"2010 IEEE 16th International Conference on Parallel and Distributed Systems","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 16th International Conference on Parallel and Distributed Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPADS.2010.105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

The research on complex Brain Networks plays a vital role in understanding the connectivity patterns of the human brain and disease-related alterations. Recent studies have suggested a noninvasive way to model and analyze human brain networks by using multi-modal imaging and graph theoretical approaches. Both the construction and analysis of the Brain Networks require tremendous computation. As a result, most current studies of the Brain Networks are focused on a coarse scale based on Brain Regions. Networks on this scale usually consist around 100 nodes. The more accurate and meticulous voxel-base Brain Networks, on the other hand, may consist 20K to 100K nodes. In response to the difficulties of analyzing large-scale networks, we propose an acceleration framework for voxel-base Brain Network Analysis based on Graphics Processing Unit (GPU). Our GPU implementations of Brain Network construction and modularity achieve 24x and 80x speedup respectively, compared with single-core CPU. Our work makes the processing time affordable to analyze multiple large-scale Brain Networks.
使人类连接组更快:GPU加速脑网络分析
复杂脑网络的研究对于理解人类大脑的连接模式和疾病相关的改变起着至关重要的作用。最近的研究提出了一种利用多模态成像和图理论方法对人脑网络进行建模和分析的无创方法。大脑网络的构建和分析都需要大量的计算。因此,目前大多数关于大脑网络的研究都集中在基于大脑区域的粗略尺度上。这种规模的网络通常由大约100个节点组成。另一方面,更精确和细致的基于体素的大脑网络可能包含20K到100K个节点。针对大规模网络分析的困难,提出了一种基于图形处理单元(GPU)的基于体素的脑网络分析加速框架。与单核CPU相比,我们的大脑网络构建和模块化GPU分别实现了24倍和80倍的加速。我们的工作使得处理时间可以负担得起分析多个大规模脑网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信