DC Motor Benchmark with Prediction Based on Mixture of Experts

P. Karban, I. Petrášová, I. Doležel
{"title":"DC Motor Benchmark with Prediction Based on Mixture of Experts","authors":"P. Karban, I. Petrášová, I. Doležel","doi":"10.1109/ELEKTRO53996.2022.9803676","DOIUrl":null,"url":null,"abstract":"The Mixture of Experts (MoE)–based approach is applied to verify the possibility of using surrogate models for searching the optima of complex multicriteria problems with constraints. This approach can successfully solve problems when the design space is limited by a higher number of constraints and traditional methods of Design of Experiments (DoE) in conjunction with one surrogate model are not able to partition the design space acceptably enough for further prediction. The methodology is tested on a well-known DC motor benchmark, where the electromagnetic and temperature fields were solved analytically, in a simplified form.","PeriodicalId":396752,"journal":{"name":"2022 ELEKTRO (ELEKTRO)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 ELEKTRO (ELEKTRO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELEKTRO53996.2022.9803676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Mixture of Experts (MoE)–based approach is applied to verify the possibility of using surrogate models for searching the optima of complex multicriteria problems with constraints. This approach can successfully solve problems when the design space is limited by a higher number of constraints and traditional methods of Design of Experiments (DoE) in conjunction with one surrogate model are not able to partition the design space acceptably enough for further prediction. The methodology is tested on a well-known DC motor benchmark, where the electromagnetic and temperature fields were solved analytically, in a simplified form.
基于专家混合预测的直流电动机基准
应用基于混合专家(MoE)的方法验证了使用代理模型搜索具有约束的复杂多准则问题的最优解的可能性。这种方法可以成功地解决设计空间受到较多约束条件限制的问题,而传统的实验设计方法(DoE)与一个代理模型相结合,无法对设计空间进行足够可接受的划分,从而无法进行进一步的预测。该方法在一个著名的直流电机基准上进行了测试,并以简化形式解析求解了电磁场和温度场。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信