Low level segmentation using CMOS smart hexagonal image sensor

M. Tremblay, S. Dallaire, D. Poussart
{"title":"Low level segmentation using CMOS smart hexagonal image sensor","authors":"M. Tremblay, S. Dallaire, D. Poussart","doi":"10.1109/CAMP.1995.521015","DOIUrl":null,"url":null,"abstract":"The exploitation of analog VLSI techniques combined with computer vision knowledge offers spectacular possibilities. Limitations of current VLSI technologies do not allow to create sensors with extremely complex pixel architecture, but the coupling of external CMOS analog processing units is a great solution for rapid low level segmentation processes. This paper presents a novel sensing approach where photo-transduction, multiresolution feature extraction, scale-space integration, and edge tracking combined with sub-pixel interpolation are performed on a mixed-signal (digital-analog) VLSI architecture. The paper also discusses how we implement the curvature primal sketch into the system for higher level scene representation. The main sensory part of this integrated image acquisition system is a CMOS sensor called Multiport Access photo-Receptor (MAR). VLSI also provides means to integrate analog computing, digital controller, and DSP co-processor modules which define a powerful sensory chip set for focal plane image processing. A current version of the MAR sensor which implements 256/spl times/256 pixels includes 16 analog spatial filters which simultaneously compute multiresolution edge maps. This novel smart image sensor approach with associated low level segmentation capability presents good opportunities for real time automated process for the particular case of unstructured environment.","PeriodicalId":277209,"journal":{"name":"Proceedings of Conference on Computer Architectures for Machine Perception","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Conference on Computer Architectures for Machine Perception","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMP.1995.521015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The exploitation of analog VLSI techniques combined with computer vision knowledge offers spectacular possibilities. Limitations of current VLSI technologies do not allow to create sensors with extremely complex pixel architecture, but the coupling of external CMOS analog processing units is a great solution for rapid low level segmentation processes. This paper presents a novel sensing approach where photo-transduction, multiresolution feature extraction, scale-space integration, and edge tracking combined with sub-pixel interpolation are performed on a mixed-signal (digital-analog) VLSI architecture. The paper also discusses how we implement the curvature primal sketch into the system for higher level scene representation. The main sensory part of this integrated image acquisition system is a CMOS sensor called Multiport Access photo-Receptor (MAR). VLSI also provides means to integrate analog computing, digital controller, and DSP co-processor modules which define a powerful sensory chip set for focal plane image processing. A current version of the MAR sensor which implements 256/spl times/256 pixels includes 16 analog spatial filters which simultaneously compute multiresolution edge maps. This novel smart image sensor approach with associated low level segmentation capability presents good opportunities for real time automated process for the particular case of unstructured environment.
采用CMOS智能六边形图像传感器进行低电平分割
利用模拟VLSI技术与计算机视觉知识相结合,提供了惊人的可能性。当前VLSI技术的限制不允许创建具有极其复杂像素架构的传感器,但外部CMOS模拟处理单元的耦合是快速低电平分割处理的一个很好的解决方案。本文提出了一种新的传感方法,其中在混合信号(数字模拟)VLSI架构上执行光导,多分辨率特征提取,尺度空间集成和边缘跟踪结合亚像素插值。本文还讨论了如何在系统中实现曲率原始草图以实现更高层次的场景表示。该集成图像采集系统的主要传感部分是一个称为多端口访问光感受器(MAR)的CMOS传感器。VLSI还提供了集成模拟计算、数字控制器和DSP协处理器模块的方法,这些模块为焦平面图像处理定义了强大的传感芯片组。当前版本的MAR传感器实现256/spl次/256像素,包括16个模拟空间滤波器,同时计算多分辨率边缘图。这种新颖的智能图像传感器方法具有低层次的分割能力,为非结构化环境的实时自动化过程提供了良好的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信