Robust model predictive control for PMSM drives based on current prediction error

Xiaoguang Zhang, Y. Cheng
{"title":"Robust model predictive control for PMSM drives based on current prediction error","authors":"Xiaoguang Zhang, Y. Cheng","doi":"10.1109/PRECEDE.2019.8753302","DOIUrl":null,"url":null,"abstract":"The model predictive current control (MPCC) uses the present sampling current to predict the next cycle current, and select the optimal voltage vector from seven voltage vectors, which will be acted on machine in next control cycle. However, the control performance of traditional MPCC is influenced by the accuracy of parameters. In order to solve the parameter sensitivity of the MPCC, a robust model predictive control method is proposed, which is based on current error that presents the difference between current predicted value and current actual value. Proposed method uses this current error to obtain the parameter information of inductance and flux linkage. The simulation and experiment indicate that proposed method can obtain accurate parameters under different operation conditions and control performance of the whole control system is excellent.","PeriodicalId":227885,"journal":{"name":"2019 IEEE International Symposium on Predictive Control of Electrical Drives and Power Electronics (PRECEDE)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Predictive Control of Electrical Drives and Power Electronics (PRECEDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRECEDE.2019.8753302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The model predictive current control (MPCC) uses the present sampling current to predict the next cycle current, and select the optimal voltage vector from seven voltage vectors, which will be acted on machine in next control cycle. However, the control performance of traditional MPCC is influenced by the accuracy of parameters. In order to solve the parameter sensitivity of the MPCC, a robust model predictive control method is proposed, which is based on current error that presents the difference between current predicted value and current actual value. Proposed method uses this current error to obtain the parameter information of inductance and flux linkage. The simulation and experiment indicate that proposed method can obtain accurate parameters under different operation conditions and control performance of the whole control system is excellent.
基于电流预测误差的永磁同步电机鲁棒模型预测控制
模型预测电流控制(MPCC)利用当前的采样电流来预测下一个周期的电流,并从7个电压矢量中选择最优电压矢量,在下一个控制周期作用于机器。然而,传统MPCC的控制性能受到参数精度的影响。为了解决MPCC的参数敏感性问题,提出了一种基于电流误差的鲁棒模型预测控制方法,该方法表示电流预测值与电流实际值之间的差异。该方法利用该电流误差获取电感链和磁链的参数信息。仿真和实验表明,该方法在不同工况下均能获得准确的参数,整个控制系统的控制性能良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信