From dimension-free manifolds to dimension-varying control systems

D. Cheng, Zhengping Ji
{"title":"From dimension-free manifolds to dimension-varying control systems","authors":"D. Cheng, Zhengping Ji","doi":"10.4310/cis.2023.v23.n1.a4","DOIUrl":null,"url":null,"abstract":"Starting from the vector multipliers, the inner product, norm, distance, as well as addition of two vectors of different dimensions are proposed, which makes the spaces into a topological vector space, called the Euclidean space of different dimension (ESDD). An equivalence is obtained via distance. As a quotient space of ESDDs w.r.t. equivalence, the dimension-free Euclidean spaces (DFESs) and dimension-free manifolds (DFMs) are obtained, which have bundled vector spaces as its tangent space at each point. Using the natural projection from a ESDD to a DFES, a fiber bundle structure is obtained, which has ESDD as its total space and DFES as its base space. Classical objects in differential geometry, such as smooth functions, (co-)vector fields, tensor fields, etc., have been extended to the case of DFMs with the help of projections among different dimensional Euclidean spaces. Then the dimension-varying dynamic systems (DVDSs) and dimension-varying control systems (DVCSs) are presented, which have DFM as their state space. The realization, which is a lifting of DVDSs or DVCSs from DFMs into ESDDs, and the projection of DVDSs or DVCSs from ESDDs onto DFMs are investigated.","PeriodicalId":185710,"journal":{"name":"Commun. Inf. Syst.","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commun. Inf. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/cis.2023.v23.n1.a4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Starting from the vector multipliers, the inner product, norm, distance, as well as addition of two vectors of different dimensions are proposed, which makes the spaces into a topological vector space, called the Euclidean space of different dimension (ESDD). An equivalence is obtained via distance. As a quotient space of ESDDs w.r.t. equivalence, the dimension-free Euclidean spaces (DFESs) and dimension-free manifolds (DFMs) are obtained, which have bundled vector spaces as its tangent space at each point. Using the natural projection from a ESDD to a DFES, a fiber bundle structure is obtained, which has ESDD as its total space and DFES as its base space. Classical objects in differential geometry, such as smooth functions, (co-)vector fields, tensor fields, etc., have been extended to the case of DFMs with the help of projections among different dimensional Euclidean spaces. Then the dimension-varying dynamic systems (DVDSs) and dimension-varying control systems (DVCSs) are presented, which have DFM as their state space. The realization, which is a lifting of DVDSs or DVCSs from DFMs into ESDDs, and the projection of DVDSs or DVCSs from ESDDs onto DFMs are investigated.
从无量纲流形到量纲变化控制系统
从向量乘子出发,提出了两个不同维向量的内积、范数、距离以及相加,使空间成为一个拓扑向量空间,称为不同维欧氏空间(ESDD)。通过距离得到等价。作为esdd w.r.t.等价的商空间,得到了无量纲欧几里得空间(DFESs)和无量纲流形(DFMs),它们在每一点的切空间都有捆绑的向量空间。利用从ESDD到DFES的自然投影,得到了以ESDD为总空间,DFES为基空间的光纤束结构。微分几何中的经典对象,如光滑函数、(共)向量场、张量场等,借助不同维欧几里德空间之间的投影,已经扩展到DFMs的情况。在此基础上,提出了变维动态系统(dvds)和变维控制系统(dvcs),它们的状态空间均为DFM。研究了将dvds或dvcs从ddm提升到esdd的实现,以及将dvds或dvcs从esdd投影到ddm的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信