{"title":"From dimension-free manifolds to dimension-varying control systems","authors":"D. Cheng, Zhengping Ji","doi":"10.4310/cis.2023.v23.n1.a4","DOIUrl":null,"url":null,"abstract":"Starting from the vector multipliers, the inner product, norm, distance, as well as addition of two vectors of different dimensions are proposed, which makes the spaces into a topological vector space, called the Euclidean space of different dimension (ESDD). An equivalence is obtained via distance. As a quotient space of ESDDs w.r.t. equivalence, the dimension-free Euclidean spaces (DFESs) and dimension-free manifolds (DFMs) are obtained, which have bundled vector spaces as its tangent space at each point. Using the natural projection from a ESDD to a DFES, a fiber bundle structure is obtained, which has ESDD as its total space and DFES as its base space. Classical objects in differential geometry, such as smooth functions, (co-)vector fields, tensor fields, etc., have been extended to the case of DFMs with the help of projections among different dimensional Euclidean spaces. Then the dimension-varying dynamic systems (DVDSs) and dimension-varying control systems (DVCSs) are presented, which have DFM as their state space. The realization, which is a lifting of DVDSs or DVCSs from DFMs into ESDDs, and the projection of DVDSs or DVCSs from ESDDs onto DFMs are investigated.","PeriodicalId":185710,"journal":{"name":"Commun. Inf. Syst.","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commun. Inf. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/cis.2023.v23.n1.a4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Starting from the vector multipliers, the inner product, norm, distance, as well as addition of two vectors of different dimensions are proposed, which makes the spaces into a topological vector space, called the Euclidean space of different dimension (ESDD). An equivalence is obtained via distance. As a quotient space of ESDDs w.r.t. equivalence, the dimension-free Euclidean spaces (DFESs) and dimension-free manifolds (DFMs) are obtained, which have bundled vector spaces as its tangent space at each point. Using the natural projection from a ESDD to a DFES, a fiber bundle structure is obtained, which has ESDD as its total space and DFES as its base space. Classical objects in differential geometry, such as smooth functions, (co-)vector fields, tensor fields, etc., have been extended to the case of DFMs with the help of projections among different dimensional Euclidean spaces. Then the dimension-varying dynamic systems (DVDSs) and dimension-varying control systems (DVCSs) are presented, which have DFM as their state space. The realization, which is a lifting of DVDSs or DVCSs from DFMs into ESDDs, and the projection of DVDSs or DVCSs from ESDDs onto DFMs are investigated.