Applying machine learning-based models to prevent University student dropouts

Jiyoung Mun, Meounggun Jo
{"title":"Applying machine learning-based models to prevent University student dropouts","authors":"Jiyoung Mun, Meounggun Jo","doi":"10.31158/jeev.2023.36.2.289","DOIUrl":null,"url":null,"abstract":"In this paper, we explored models with good performance indexes for predicting student characteristics and dropout status to prevent students from dropping out. As a result of applying 6 classification models to 30,118 academic data of University A from 2018 to 2022, the accuracy rate of XGboost algorithm was 96.9% and the recall rate was 94.4%. XGboost was selected as the final model and the importance of the dropout influencing factors was high in the following order: total number of grade changes, number of semesters completed, number of leaves of absence, grade point average, grade level, and number of academic warnings. Finally, we proposed long-term and short-term management strategies for students with a high probability of dropping out of school through a consistent dropout prediction process.","PeriodicalId":207460,"journal":{"name":"Korean Society for Educational Evaluation","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Society for Educational Evaluation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31158/jeev.2023.36.2.289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we explored models with good performance indexes for predicting student characteristics and dropout status to prevent students from dropping out. As a result of applying 6 classification models to 30,118 academic data of University A from 2018 to 2022, the accuracy rate of XGboost algorithm was 96.9% and the recall rate was 94.4%. XGboost was selected as the final model and the importance of the dropout influencing factors was high in the following order: total number of grade changes, number of semesters completed, number of leaves of absence, grade point average, grade level, and number of academic warnings. Finally, we proposed long-term and short-term management strategies for students with a high probability of dropping out of school through a consistent dropout prediction process.
应用基于机器学习的模型来防止大学生辍学
在本文中,我们探索了具有良好性能指标的模型来预测学生特征和辍学状况,以防止学生辍学。将6种分类模型应用于a大学2018 - 2022年的30118份学术数据,XGboost算法准确率为96.9%,召回率为94.4%。选择XGboost作为最终模型,退学影响因素的重要程度依次为:总年级变化次数、完成学期数、缺课次数、平均成绩、年级水平、学术警告次数。最后,通过一致的辍学预测过程,提出了高概率辍学学生的长期和短期管理策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信