A critical overview of neural network pattern classifiers

R. Lippmann
{"title":"A critical overview of neural network pattern classifiers","authors":"R. Lippmann","doi":"10.1109/NNSP.1991.239515","DOIUrl":null,"url":null,"abstract":"A taxonomy of neural network pattern classifiers is presented which includes four major groupings. Global discriminant classifiers use sigmoid or polynomial computing elements that have 'high' nonzero outputs over most of their input space. Local discriminant classifiers use Gaussian or other localized computing elements that have 'high' nonzero outputs over only a small localized region of their input space. Nearest neighbor classifiers compute the distance to stored exemplar patterns and rule forming classifiers use binary threshold-logic computing elements to produce binary outputs. Results of experiments are presented which demonstrate that neural network classifiers provide error rates which are equivalent to and sometimes lower than those of more conventional Gaussian. Gaussian mixture, and binary three classifiers using the same amount of training data.<<ETX>>","PeriodicalId":354832,"journal":{"name":"Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"68","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.1991.239515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 68

Abstract

A taxonomy of neural network pattern classifiers is presented which includes four major groupings. Global discriminant classifiers use sigmoid or polynomial computing elements that have 'high' nonzero outputs over most of their input space. Local discriminant classifiers use Gaussian or other localized computing elements that have 'high' nonzero outputs over only a small localized region of their input space. Nearest neighbor classifiers compute the distance to stored exemplar patterns and rule forming classifiers use binary threshold-logic computing elements to produce binary outputs. Results of experiments are presented which demonstrate that neural network classifiers provide error rates which are equivalent to and sometimes lower than those of more conventional Gaussian. Gaussian mixture, and binary three classifiers using the same amount of training data.<>
神经网络模式分类器的关键概述
提出了一种神经网络模式分类器的分类方法,包括四大类。全局判别分类器使用在其大部分输入空间上具有“高”非零输出的sigmoid或多项式计算元素。局部判别分类器使用高斯或其他局部计算元素,这些元素仅在其输入空间的一小局部区域上具有“高”非零输出。最近邻分类器计算到存储的范例模式的距离,规则形成分类器使用二进制阈值-逻辑计算元素来产生二进制输出。实验结果表明,神经网络分类器的错误率与传统的高斯分类器相当,有时甚至更低。高斯混合,以及使用相同数量训练数据的二值三分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信