Characterizing chaotic attractors using fourth-order off-diagonal cumulant slices

S. Heidari, C. Nikias
{"title":"Characterizing chaotic attractors using fourth-order off-diagonal cumulant slices","authors":"S. Heidari, C. Nikias","doi":"10.1109/ACSSC.1993.342557","DOIUrl":null,"url":null,"abstract":"Local intrinsic dimension (LID) is a new approach to characterize chaotic signals. This method demonstrates more robustness to noise than the traditional fractal dimension (FD) estimation algorithms such as the Grassberger and Procaccia algorithm (GPA). In order to form the attractor in the phase space, the one-dimensional time-series of a signal needs to be embedded in a higher dimension. A significant limitation of the LID methods and the traditional FD methods is their sensitivity to the size of the higher embedding dimension (r) in the presence of noise. A new estimation method of the LID using higher-order statistics is proposed for chaotic signals corrupted by additive noise. In this work, estimation of the LID is based on the fourth-order, off-diagonal cumulant matrix and is shown to be less sensitive to noise and the size of the embedding dimension.<<ETX>>","PeriodicalId":266447,"journal":{"name":"Proceedings of 27th Asilomar Conference on Signals, Systems and Computers","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 27th Asilomar Conference on Signals, Systems and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.1993.342557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Local intrinsic dimension (LID) is a new approach to characterize chaotic signals. This method demonstrates more robustness to noise than the traditional fractal dimension (FD) estimation algorithms such as the Grassberger and Procaccia algorithm (GPA). In order to form the attractor in the phase space, the one-dimensional time-series of a signal needs to be embedded in a higher dimension. A significant limitation of the LID methods and the traditional FD methods is their sensitivity to the size of the higher embedding dimension (r) in the presence of noise. A new estimation method of the LID using higher-order statistics is proposed for chaotic signals corrupted by additive noise. In this work, estimation of the LID is based on the fourth-order, off-diagonal cumulant matrix and is shown to be less sensitive to noise and the size of the embedding dimension.<>
局部固有维数(LID)是表征混沌信号的一种新方法。与传统的分形维数(FD)估计算法如Grassberger和Procaccia算法(GPA)相比,该方法对噪声具有更强的鲁棒性。为了在相空间中形成吸引子,需要将信号的一维时间序列嵌入到更高的维度中。LID方法和传统FD方法的一个显著限制是它们对存在噪声的较高嵌入维数(r)的大小的敏感性。针对加性噪声干扰下的混沌信号,提出了一种基于高阶统计量的LID估计方法。在这项工作中,LID的估计是基于四阶非对角累积矩阵的,并且对噪声和嵌入维数的大小不太敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信