Cognitive Radio Networks Channel State Estimation Using Machine Learning Techniques

D. Tarek, A. Benslimane, M. Darwish, A. Kotb
{"title":"Cognitive Radio Networks Channel State Estimation Using Machine Learning Techniques","authors":"D. Tarek, A. Benslimane, M. Darwish, A. Kotb","doi":"10.1109/IWCMC.2019.8766457","DOIUrl":null,"url":null,"abstract":"In interweave Cognitive Radio Networks (CRNs), monitoring the spectrum to detect unused portions (holes) is done by the spectrum sensing function however, it consumes both time and energy. So, some protocols use prediction to estimate the channel availability. One of these protocols use Hidden Markov Model (HMM) but in a very simple way. So, it does not perform well in several cases. In this paper, we propose two new protocols for cognitive radio channel availability prediction. Both protocols use HMM but in a more advanced way. They divide the data into two sets, thus create two HMM models. The first protocol uses Bayes theorem together with these two models, while the second one uses Support Vector Machine (SVM) with the two models HMM parameters. Evaluation of the two protocols proves that both protocols perform better than the old one that uses HMM in a classical way. It also proves that using SVM with HMM parameters is better than using HMM only. This is because dividing the data into two sets for training the protocols with, gives more flexibility to both protocols.","PeriodicalId":363800,"journal":{"name":"2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCMC.2019.8766457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In interweave Cognitive Radio Networks (CRNs), monitoring the spectrum to detect unused portions (holes) is done by the spectrum sensing function however, it consumes both time and energy. So, some protocols use prediction to estimate the channel availability. One of these protocols use Hidden Markov Model (HMM) but in a very simple way. So, it does not perform well in several cases. In this paper, we propose two new protocols for cognitive radio channel availability prediction. Both protocols use HMM but in a more advanced way. They divide the data into two sets, thus create two HMM models. The first protocol uses Bayes theorem together with these two models, while the second one uses Support Vector Machine (SVM) with the two models HMM parameters. Evaluation of the two protocols proves that both protocols perform better than the old one that uses HMM in a classical way. It also proves that using SVM with HMM parameters is better than using HMM only. This is because dividing the data into two sets for training the protocols with, gives more flexibility to both protocols.
使用机器学习技术的认知无线网络信道状态估计
在交织认知无线电网络(crn)中,监测频谱以检测未使用的部分(空穴)是由频谱感知功能来完成的,但它既耗时又耗能。因此,一些协议使用预测来估计信道的可用性。其中一个协议使用隐马尔可夫模型(HMM),但方式非常简单。因此,它在一些情况下表现不佳。在本文中,我们提出了两个新的认知无线电信道可用性预测协议。这两种协议都使用HMM,但以更高级的方式使用。他们将数据分成两组,从而创建了两个HMM模型。第一种协议将贝叶斯定理与这两个模型结合使用,第二种协议将支持向量机(SVM)与这两个模型的HMM参数结合使用。通过对两种协议的评估,证明了两种协议的性能都优于传统的HMM协议。同时也证明了使用HMM参数的支持向量机比只使用HMM参数的支持向量机效果更好。这是因为将数据分成两组来训练协议,可以为两种协议提供更大的灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信