Privacy-Preserving Multi-Party Machine Learning for Object Detection

Imen Chakroun, T. Aa, Roel Wuyts, Wilfried Verarcht
{"title":"Privacy-Preserving Multi-Party Machine Learning for Object Detection","authors":"Imen Chakroun, T. Aa, Roel Wuyts, Wilfried Verarcht","doi":"10.1109/gcaiot53516.2021.9692980","DOIUrl":null,"url":null,"abstract":"In order to mitigate the privacy threats and resource constraints for real-time object detection applications on edge nodes, we describe an approach to building a distributed multi-party You Only Look Once object detector. We carefully separate out what each device can see to prevent the sharing of sensitive data and model whilst improving prediction results. Privacy, correctness and latency concerns were discussed along the paper showing that the approach does not leak sensitive information, enables the construction of machine learning models that are better than purely local models and where the overall performances are on par with the global predictions resulting from the pooling of all data.","PeriodicalId":169247,"journal":{"name":"2021 IEEE Global Conference on Artificial Intelligence and Internet of Things (GCAIoT)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Global Conference on Artificial Intelligence and Internet of Things (GCAIoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/gcaiot53516.2021.9692980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In order to mitigate the privacy threats and resource constraints for real-time object detection applications on edge nodes, we describe an approach to building a distributed multi-party You Only Look Once object detector. We carefully separate out what each device can see to prevent the sharing of sensitive data and model whilst improving prediction results. Privacy, correctness and latency concerns were discussed along the paper showing that the approach does not leak sensitive information, enables the construction of machine learning models that are better than purely local models and where the overall performances are on par with the global predictions resulting from the pooling of all data.
保护隐私的对象检测多方机器学习
为了减轻边缘节点上实时对象检测应用的隐私威胁和资源限制,我们描述了一种构建分布式多方You Only Look Once对象检测器的方法。我们仔细区分每个设备可以看到的内容,以防止共享敏感数据和模型,同时提高预测结果。论文中讨论了隐私、正确性和延迟问题,表明该方法不会泄露敏感信息,能够构建比纯粹的局部模型更好的机器学习模型,并且总体性能与所有数据池产生的全局预测相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信