Malware Detection Using Machine Learning Based on the Combination of Dynamic and Static Features

Jingling Zhao, Suo-Juan Zhang, Bohan Liu, Baojiang Cui
{"title":"Malware Detection Using Machine Learning Based on the Combination of Dynamic and Static Features","authors":"Jingling Zhao, Suo-Juan Zhang, Bohan Liu, Baojiang Cui","doi":"10.1109/ICCCN.2018.8487459","DOIUrl":null,"url":null,"abstract":"As millions of new malware samples emerge every day, traditional malware detection techniques are no longer adequate. Static analysis methods, such as file signature, fail to detect unknown programs. Dynamic analysis methods have low efficiency and high false positive rate. We need a detection technique that can adapt to the rapidly changing malware ecosystem. The paper presented a new malware detection method using machine learning based on the combination of dynamic and static features. The characteristic of this experiment involved in many fields of knowledge, including binary program instrumentation, static analysis, assembly instruction analysis, machine learning, etc. Finally, we achieved a good result over a substantial number of malwares.","PeriodicalId":399145,"journal":{"name":"2018 27th International Conference on Computer Communication and Networks (ICCCN)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 27th International Conference on Computer Communication and Networks (ICCCN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCN.2018.8487459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

As millions of new malware samples emerge every day, traditional malware detection techniques are no longer adequate. Static analysis methods, such as file signature, fail to detect unknown programs. Dynamic analysis methods have low efficiency and high false positive rate. We need a detection technique that can adapt to the rapidly changing malware ecosystem. The paper presented a new malware detection method using machine learning based on the combination of dynamic and static features. The characteristic of this experiment involved in many fields of knowledge, including binary program instrumentation, static analysis, assembly instruction analysis, machine learning, etc. Finally, we achieved a good result over a substantial number of malwares.
基于动态与静态特征结合的机器学习恶意软件检测
随着每天数以百万计的新恶意软件样本的出现,传统的恶意软件检测技术已不再适用。静态分析方法(如文件签名)无法检测到未知程序。动态分析方法效率低,假阳性率高。我们需要一种能够适应快速变化的恶意软件生态系统的检测技术。提出了一种基于动态特征和静态特征相结合的机器学习恶意软件检测方法。本实验的特点涉及到很多领域的知识,包括二进制程序仪表、静态分析、汇编指令分析、机器学习等。最后,我们在大量的恶意软件中取得了很好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信