{"title":"Machine Learning Based Program to Prevent Hospitalizations and Reduce Costs in the Colombian Statutory Health Care System","authors":"Alvaro J. Riascos, Natalia Serna","doi":"10.4018/IJKDB.2018070103","DOIUrl":null,"url":null,"abstract":"Health-care systems that rely on hospitalization for early patient treatment pose a financial concern for governments. In this article, the author suggests a hospitalization prevention program in which the decision of whether to intervene on a patient depends on a simple decision model and the prediction of the patient risk of an annual length-of-stay using machine learning techniques. These results show that the prevention program achieves significant cost savings relative to several base scenarios for program efficacies greater than or equal to 40% and intervention costs per patient of 100,000 to 700,000 Colombian pesos (i.e., approximately 14% to 100% of the average cost per patient in Colombia statuary health care system). This article also shows how tree-based methods outperform linear regressions when predicting an annual length-of-stay and the final model achieves a lower out-of-sample error compared to those of the Heritage Health Prize.","PeriodicalId":160270,"journal":{"name":"Int. J. Knowl. Discov. Bioinform.","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Knowl. Discov. Bioinform.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJKDB.2018070103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Health-care systems that rely on hospitalization for early patient treatment pose a financial concern for governments. In this article, the author suggests a hospitalization prevention program in which the decision of whether to intervene on a patient depends on a simple decision model and the prediction of the patient risk of an annual length-of-stay using machine learning techniques. These results show that the prevention program achieves significant cost savings relative to several base scenarios for program efficacies greater than or equal to 40% and intervention costs per patient of 100,000 to 700,000 Colombian pesos (i.e., approximately 14% to 100% of the average cost per patient in Colombia statuary health care system). This article also shows how tree-based methods outperform linear regressions when predicting an annual length-of-stay and the final model achieves a lower out-of-sample error compared to those of the Heritage Health Prize.