Distributed generation intelligent islanding detection using governor signal clustering

A. Darabi, A. Moeini, M. Karimi
{"title":"Distributed generation intelligent islanding detection using governor signal clustering","authors":"A. Darabi, A. Moeini, M. Karimi","doi":"10.1109/PEOCO.2010.5559212","DOIUrl":null,"url":null,"abstract":"One of the major protection concerns with distribution networks comprising distributed generation is unintentional islanding phenomenon. Expert diagnosis system is needed to distinguish network cut off from normal occurrences. An important part of synchronous generator is automatic load-frequency controller (ALFC). In this paper, a new approach based on clustering of input signal to governor is introduced. Self-organizing map (SOM) neural network is used to identify and classify islanding and non-islanding phenomena. Simulation results show that input signal to governor has different characteristics concern with islanding conditions and other disturbances. In addition, the SOM is able to identify and classify phenomena satisfactorily. Using proposed method, islanding can be detected after 200 ms.","PeriodicalId":379868,"journal":{"name":"2010 4th International Power Engineering and Optimization Conference (PEOCO)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 4th International Power Engineering and Optimization Conference (PEOCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PEOCO.2010.5559212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

One of the major protection concerns with distribution networks comprising distributed generation is unintentional islanding phenomenon. Expert diagnosis system is needed to distinguish network cut off from normal occurrences. An important part of synchronous generator is automatic load-frequency controller (ALFC). In this paper, a new approach based on clustering of input signal to governor is introduced. Self-organizing map (SOM) neural network is used to identify and classify islanding and non-islanding phenomena. Simulation results show that input signal to governor has different characteristics concern with islanding conditions and other disturbances. In addition, the SOM is able to identify and classify phenomena satisfactorily. Using proposed method, islanding can be detected after 200 ms.
基于调速器信号聚类的分布式发电智能孤岛检测
其中一个主要的保护问题,配电网组成的分布式发电是无意孤岛现象。需要专家诊断系统来区分网络中断和正常情况。同步发电机的重要组成部分是自动负载频率控制器(ALFC)。本文提出了一种基于输入信号聚类的调速器控制方法。采用自组织映射(SOM)神经网络对孤岛现象和非孤岛现象进行识别和分类。仿真结果表明,在孤岛条件和其他干扰下,调速器的输入信号具有不同的特性。此外,SOM能够令人满意地识别和分类现象。采用该方法,可以在200 ms后检测到孤岛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信