Sparse Representation On Single Image

Jin Tan, Taiping Zhang, Yuanyan Tang
{"title":"Sparse Representation On Single Image","authors":"Jin Tan, Taiping Zhang, Yuanyan Tang","doi":"10.1109/ICWAPR48189.2019.8946484","DOIUrl":null,"url":null,"abstract":"In recent years, sparse representation of vector signals has been successfully applied in the field of pattern recognition. However, this approach can not be used for single image, as it may require the dictionary to be overcomplete. In addition, the sparse coefficients lack some geometric explanations. This work proposes a novel sparse coding technique on single image. This sparse coding coefficients have explicitly the geometric explanations of images. It depicts the structure information of the image which is robust to variations in illumination, expression, and occlusion. Therefore, the sparse coding coefficients can be used for feature representation of images on small sample case. Experiments on face databases demonstrate the effectiveness of the new sparse coding model.","PeriodicalId":436840,"journal":{"name":"2019 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWAPR48189.2019.8946484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, sparse representation of vector signals has been successfully applied in the field of pattern recognition. However, this approach can not be used for single image, as it may require the dictionary to be overcomplete. In addition, the sparse coefficients lack some geometric explanations. This work proposes a novel sparse coding technique on single image. This sparse coding coefficients have explicitly the geometric explanations of images. It depicts the structure information of the image which is robust to variations in illumination, expression, and occlusion. Therefore, the sparse coding coefficients can be used for feature representation of images on small sample case. Experiments on face databases demonstrate the effectiveness of the new sparse coding model.
单幅图像的稀疏表示
近年来,向量信号的稀疏表示已成功地应用于模式识别领域。但是,这种方法不能用于单个图像,因为它可能需要字典过于完整。此外,稀疏系数缺乏一些几何解释。本文提出了一种新的单幅图像稀疏编码技术。该稀疏编码系数具有明确的图像几何解释。它描述了图像的结构信息,对光照、表情和遮挡的变化具有鲁棒性。因此,稀疏编码系数可以用于小样本情况下图像的特征表示。在人脸数据库上的实验证明了该稀疏编码模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信