On Lebesgue Integral Quadrature

V. Malyshkin
{"title":"On Lebesgue Integral Quadrature","authors":"V. Malyshkin","doi":"10.2139/ssrn.3229363","DOIUrl":null,"url":null,"abstract":"A new type of quadrature is developed. The Gaussian quadrature, for a given measure, finds optimal values of a function's argument (nodes) and the corresponding weights. In contrast, the Lebesgue quadrature developed in this paper, finds optimal values of function (value-nodes) and the corresponding weights. The Gaussian quadrature groups sums by function argument; it can be viewed as a $n$-point discrete measure, producing the Riemann integral. The Lebesgue quadrature groups sums by function value; it can be viewed as a $n$-point discrete distribution, producing the Lebesgue integral. Mathematically, the problem is reduced to a generalized eigenvalue problem: Lebesgue quadrature value-nodes are the eigenvalues and the corresponding weights are the square of the averaged eigenvectors. A numerical estimation of an integral as the Lebesgue integral is especially advantageous when analyzing irregular and stochastic processes. The approach separates the outcome (value-nodes) and the probability of the outcome (weight). For this reason, it is especially well-suited for the study of non-Gaussian processes. The software implementing the theory is available from the authors.","PeriodicalId":443021,"journal":{"name":"Engineering Educator: Courses","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Educator: Courses","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3229363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

A new type of quadrature is developed. The Gaussian quadrature, for a given measure, finds optimal values of a function's argument (nodes) and the corresponding weights. In contrast, the Lebesgue quadrature developed in this paper, finds optimal values of function (value-nodes) and the corresponding weights. The Gaussian quadrature groups sums by function argument; it can be viewed as a $n$-point discrete measure, producing the Riemann integral. The Lebesgue quadrature groups sums by function value; it can be viewed as a $n$-point discrete distribution, producing the Lebesgue integral. Mathematically, the problem is reduced to a generalized eigenvalue problem: Lebesgue quadrature value-nodes are the eigenvalues and the corresponding weights are the square of the averaged eigenvectors. A numerical estimation of an integral as the Lebesgue integral is especially advantageous when analyzing irregular and stochastic processes. The approach separates the outcome (value-nodes) and the probability of the outcome (weight). For this reason, it is especially well-suited for the study of non-Gaussian processes. The software implementing the theory is available from the authors.
关于勒贝格积分正交
提出了一种新的正交法。高斯正交,对于给定的度量,找到函数参数(节点)和相应权重的最优值。与此相反,本文提出的勒贝格正交法寻找函数(值节点)的最优值和相应的权值。高斯正交群的函数参数和它可以看作是一个n点离散测度,产生黎曼积分。Lebesgue正交群的函数值和它可以看作是一个n点离散分布,产生勒贝格积分。在数学上,该问题被简化为一个广义特征值问题:勒贝格正交值节点是特征值,对应的权重是平均特征向量的平方。积分的数值估计如勒贝格积分在分析不规则和随机过程时特别有利。该方法将结果(值节点)和结果的概率(权重)分开。由于这个原因,它特别适合于研究非高斯过程。实现该理论的软件可从作者处获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信