A new local feature extraction approach for content-based 3D medical model retrieval using shape descriptor

L. Bergamasco, Fátima L. S. Nunes
{"title":"A new local feature extraction approach for content-based 3D medical model retrieval using shape descriptor","authors":"L. Bergamasco, Fátima L. S. Nunes","doi":"10.1145/2554850.2554873","DOIUrl":null,"url":null,"abstract":"Three-dimensional models are being extensively used in our society. Global shape descriptors are more frequently used in the Content-Based Image Retrieval (CBIR) context due to their robustness and easy implementation, but this kind of descriptor is not adequate for retrieval models with specific characteristics. In this paper a local descriptor is proposed, which analyzes the 3D model shape in different locations of the object in order to increase the retrieval accuracy. Our method is compared with a global descriptor, Distance Histogram, using generic models and specific models which have shape deformations in specific areas. Results show that our method presented higher performance in both contexts.","PeriodicalId":285655,"journal":{"name":"Proceedings of the 29th Annual ACM Symposium on Applied Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th Annual ACM Symposium on Applied Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2554850.2554873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Three-dimensional models are being extensively used in our society. Global shape descriptors are more frequently used in the Content-Based Image Retrieval (CBIR) context due to their robustness and easy implementation, but this kind of descriptor is not adequate for retrieval models with specific characteristics. In this paper a local descriptor is proposed, which analyzes the 3D model shape in different locations of the object in order to increase the retrieval accuracy. Our method is compared with a global descriptor, Distance Histogram, using generic models and specific models which have shape deformations in specific areas. Results show that our method presented higher performance in both contexts.
一种基于内容的三维医学模型局部特征提取方法
三维模型在我们的社会中被广泛使用。全局形状描述符由于其鲁棒性和易于实现的特点,在基于内容的图像检索(CBIR)中得到了广泛的应用,但这种描述符并不适合具有特定特征的检索模型。本文提出了一种局部描述符,分析三维模型在物体不同位置的形状,以提高检索精度。我们的方法比较了一个全局描述符,距离直方图,使用通用模型和特定模型的形状变形在特定区域。结果表明,我们的方法在这两种情况下都具有更高的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信