Impacts of Artefacts and Adversarial Attacks in Deep Learning based Action Recognition

Anh H. Nguyen, Huyen T. T. Tran, Duc V. Nguyen, T. Thang
{"title":"Impacts of Artefacts and Adversarial Attacks in Deep Learning based Action Recognition","authors":"Anh H. Nguyen, Huyen T. T. Tran, Duc V. Nguyen, T. Thang","doi":"10.1109/icce-asia46551.2019.8942197","DOIUrl":null,"url":null,"abstract":"Current state-of-the-art deep learning-based models for human action recognition achieve impressive accuracy on benchmark datasets. However, the fact that those models are trained and tested on “clean” and high-quality input data raises a concern about their reliability under transmission artefacts and adversarial perturbations. In this work, we conduct for the first time an evaluation of the impacts of artefacts and adversarial attacks in deep learning-based human action recognition. Findings from this evaluation provide insights into the behaviors of action recognition under hostile conditions of best-effort networks.","PeriodicalId":117814,"journal":{"name":"2019 IEEE International Conference on Consumer Electronics - Asia (ICCE-Asia)","volume":"6 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Consumer Electronics - Asia (ICCE-Asia)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icce-asia46551.2019.8942197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Current state-of-the-art deep learning-based models for human action recognition achieve impressive accuracy on benchmark datasets. However, the fact that those models are trained and tested on “clean” and high-quality input data raises a concern about their reliability under transmission artefacts and adversarial perturbations. In this work, we conduct for the first time an evaluation of the impacts of artefacts and adversarial attacks in deep learning-based human action recognition. Findings from this evaluation provide insights into the behaviors of action recognition under hostile conditions of best-effort networks.
人工制品和对抗性攻击在基于深度学习的动作识别中的影响
目前最先进的基于深度学习的人类行为识别模型在基准数据集上取得了令人印象深刻的准确性。然而,这些模型是在“干净”和高质量的输入数据上进行训练和测试的,这一事实引起了人们对它们在传输伪像和对抗性扰动下的可靠性的担忧。在这项工作中,我们首次对人工制品和对抗性攻击在基于深度学习的人类行为识别中的影响进行了评估。从这个评估的发现提供了洞见的行为识别的最佳努力网络的敌对条件下的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信