A Hybrid Sentiment Lexicon for Social Media Mining

A. Muhammad, N. Wiratunga, Robert Lothian
{"title":"A Hybrid Sentiment Lexicon for Social Media Mining","authors":"A. Muhammad, N. Wiratunga, Robert Lothian","doi":"10.1109/ICTAI.2014.76","DOIUrl":null,"url":null,"abstract":"Sentiment lexicon is a crucial resource for opinion mining from social media content. However, standard off-the-shelve lexicons are static and typically do not adapt, in content and context, to a target domain. This limitation, adversely affects the effectiveness of sentiment analysis algorithms. In this paper, we introduce the idea of distant-supervision to learn a domain-focused lexicon to improve coverage and sentiment context of terms. We present a weighted strategy to integrate scores from the domain-focused with the static lexicon to generate a hybrid lexicon. Evaluations of this hybrid lexicon on social media text show superior sentiment classification over either of the individual lexicons. A further comparative study with typical machine learning approaches to sentiment analysis also confirms this position. We also present promising results from our investigations into the transferability of this distant-supervised hybrid lexicon on three different social media.","PeriodicalId":142794,"journal":{"name":"2014 IEEE 26th International Conference on Tools with Artificial Intelligence","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 26th International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2014.76","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Sentiment lexicon is a crucial resource for opinion mining from social media content. However, standard off-the-shelve lexicons are static and typically do not adapt, in content and context, to a target domain. This limitation, adversely affects the effectiveness of sentiment analysis algorithms. In this paper, we introduce the idea of distant-supervision to learn a domain-focused lexicon to improve coverage and sentiment context of terms. We present a weighted strategy to integrate scores from the domain-focused with the static lexicon to generate a hybrid lexicon. Evaluations of this hybrid lexicon on social media text show superior sentiment classification over either of the individual lexicons. A further comparative study with typical machine learning approaches to sentiment analysis also confirms this position. We also present promising results from our investigations into the transferability of this distant-supervised hybrid lexicon on three different social media.
一种用于社交媒体挖掘的混合情感词典
情感词汇是社交媒体内容意见挖掘的重要资源。然而,标准的现成词汇是静态的,在内容和上下文中通常不适应目标域。这种限制对情感分析算法的有效性产生了不利影响。在本文中,我们引入了远程监督的思想来学习一个以领域为中心的词汇,以提高术语的覆盖范围和情感语境。我们提出了一种加权策略,将领域关注的分数与静态词典结合起来,生成混合词典。对这种混合词典在社交媒体文本上的评估显示,其情感分类优于任何一个单独的词典。与典型的机器学习方法进行情感分析的进一步比较研究也证实了这一观点。我们还通过对这种远程监督混合词汇在三种不同社交媒体上的可转移性的调查,提出了有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信