An Algorithm for Building Rectangular Floor-Plans

Sany M. Leinwand, Y. Lai
{"title":"An Algorithm for Building Rectangular Floor-Plans","authors":"Sany M. Leinwand, Y. Lai","doi":"10.1109/DAC.1984.1585874","DOIUrl":null,"url":null,"abstract":"Previous reports [1] [3] have shown how to build an optimal floor-plan assembly starting with a planar structure graph in terms of components and their connections. The existing methods are based on exhaustively inspecting all possible rectangular duals until an optimal one is found. However, expensive computational resources are wasted when no rectangular dual exists. This paper presents a graph-theoretical formulation for the existence of rectangular floor-plans. It is shown that any triangulated graph (planar graph with all regions triangular) admits a rectangular dual if and only if it does not contain complex triangular faces. This result is the basis of a fast algorithm for checking admissibility of solutions.","PeriodicalId":188431,"journal":{"name":"21st Design Automation Conference Proceedings","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1984-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"21st Design Automation Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAC.1984.1585874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

Abstract

Previous reports [1] [3] have shown how to build an optimal floor-plan assembly starting with a planar structure graph in terms of components and their connections. The existing methods are based on exhaustively inspecting all possible rectangular duals until an optimal one is found. However, expensive computational resources are wasted when no rectangular dual exists. This paper presents a graph-theoretical formulation for the existence of rectangular floor-plans. It is shown that any triangulated graph (planar graph with all regions triangular) admits a rectangular dual if and only if it does not contain complex triangular faces. This result is the basis of a fast algorithm for checking admissibility of solutions.
建立矩形平面图的一种算法
以前的报告[1][3]已经展示了如何从一个平面结构图开始,根据组件及其连接来构建一个最优的平面平面装配图。现有的方法是基于穷尽地检查所有可能的矩形对偶,直到找到最优的对偶。然而,当不存在矩形对偶时,会浪费大量的计算资源。本文给出了矩形平面图存在性的图解理论公式。证明了任何三角图(所有区域都是三角形的平面图)当且仅当它不包含复三角形面时允许矩形对偶。这一结果为快速判别解的可容许性算法奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信