A heuristic for optimizing the multiplication of matrix chains

ACM-SE 17 Pub Date : 1979-04-09 DOI:10.1145/503506.503511
Lionel E. Deimel, Tempe Ann Lampe
{"title":"A heuristic for optimizing the multiplication of matrix chains","authors":"Lionel E. Deimel, Tempe Ann Lampe","doi":"10.1145/503506.503511","DOIUrl":null,"url":null,"abstract":"A consequence of the associative property of matrix multiplication is that the product of n matrices can be calculated in (n-1)! ways. Different choices for the multiplication sequence can cause the numbers of scalar multiplications required to vary by several orders of magnitude. The optimal ordering with respect to number of scalar multiplications can be found in O(n3) time using dynamic programming. A heuristic is presented which finds an optimal or nearly optimal strategy in O(n2) time in its most straightforward implementation. The problem is important in interpretation or code generation for languages which allow high-level manipulation of matrices.","PeriodicalId":258426,"journal":{"name":"ACM-SE 17","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1979-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM-SE 17","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/503506.503511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A consequence of the associative property of matrix multiplication is that the product of n matrices can be calculated in (n-1)! ways. Different choices for the multiplication sequence can cause the numbers of scalar multiplications required to vary by several orders of magnitude. The optimal ordering with respect to number of scalar multiplications can be found in O(n3) time using dynamic programming. A heuristic is presented which finds an optimal or nearly optimal strategy in O(n2) time in its most straightforward implementation. The problem is important in interpretation or code generation for languages which allow high-level manipulation of matrices.
优化矩阵链乘法的一种启发式算法
矩阵乘法的结合律的一个结果是n个矩阵的乘积可以在(n-1)中计算!的方式。对乘法序列的不同选择可能导致所需的标量乘法的数量变化几个数量级。使用动态规划可以在O(n3)时间内找到关于标量乘法数量的最优排序。提出了一种启发式算法,在O(n2)时间内以最直接的方式找到最优或接近最优策略。对于允许对矩阵进行高级操作的语言,这个问题在解释或代码生成中很重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信