A comparative analysis of bio- inspired optimization algorithms for Optimal Reactive Power Dispatch

Kevin Steven Morgado Gómez, Néstor Germán Bolívar Pulgarín
{"title":"A comparative analysis of bio- inspired optimization algorithms for Optimal Reactive Power Dispatch","authors":"Kevin Steven Morgado Gómez, Néstor Germán Bolívar Pulgarín","doi":"10.1109/ice3is54102.2021.9649712","DOIUrl":null,"url":null,"abstract":"In this paper, it is developed an analysis of the usage of meta-heuristic models inspired by nature to obtain the Optimal Reactive Power Dispatch of a 30 bus system. Firstly, the obj ective function is presented, considering its power flow parameters. Afterward, the main algorithms were introduced the Grey Wolf Optimization (GWO), its improved version (1-GWO), and the Whale Optimization Algorithm (WOA). Then, they were implemented on the IEEE 30 bus system to calculate the obj ective function with 13 decision variables and 7 restrictions. Finally, the main results were presented, where it is highlighted an improvement in the Objective Function of 0.45%, in comparison with the traditional Optimal Power Flow implemented in Matpower.","PeriodicalId":134945,"journal":{"name":"2021 1st International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 1st International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ice3is54102.2021.9649712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, it is developed an analysis of the usage of meta-heuristic models inspired by nature to obtain the Optimal Reactive Power Dispatch of a 30 bus system. Firstly, the obj ective function is presented, considering its power flow parameters. Afterward, the main algorithms were introduced the Grey Wolf Optimization (GWO), its improved version (1-GWO), and the Whale Optimization Algorithm (WOA). Then, they were implemented on the IEEE 30 bus system to calculate the obj ective function with 13 decision variables and 7 restrictions. Finally, the main results were presented, where it is highlighted an improvement in the Objective Function of 0.45%, in comparison with the traditional Optimal Power Flow implemented in Matpower.
无功最优调度的仿生优化算法比较分析
本文分析了利用自然启发的元启发式模型求解某30母线系统的最优无功调度问题。首先,考虑其潮流参数,给出了目标函数;随后介绍了主要算法灰狼优化算法(GWO)及其改进版本(1-GWO)和鲸鱼优化算法(WOA)。然后在IEEE 30总线系统上实现,计算出具有13个决策变量和7个约束条件的目标函数。最后,给出了主要结果,其中强调了与传统的Matpower实现的最优潮流相比,目标函数的改进为0.45%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信