Guiding Random Test Generation for Intra-class Dataflow Coverage

Petru Florin Mihancea, Edit Mercedes Mera-Batiz, M. Minea
{"title":"Guiding Random Test Generation for Intra-class Dataflow Coverage","authors":"Petru Florin Mihancea, Edit Mercedes Mera-Batiz, M. Minea","doi":"10.1109/SYNASC.2014.28","DOIUrl":null,"url":null,"abstract":"Automatic generation of a good test suite is difficult, especially for object-oriented software. Feedback-directed random test generation is an approach that can achieve good branch coverage and has been used as a basis to systematically construct suites for testing realistic Java programs. We augment this random test generation method to create tests suites that satisfy an intra-class data-flow coverage criterion which is highly relevant for object orientation, although little addressed or achieved by tools in practice. We show that our approach can be used on real object-oriented software and that the technique for guiding test generation produces an increase in coverage.","PeriodicalId":150575,"journal":{"name":"2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2014.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Automatic generation of a good test suite is difficult, especially for object-oriented software. Feedback-directed random test generation is an approach that can achieve good branch coverage and has been used as a basis to systematically construct suites for testing realistic Java programs. We augment this random test generation method to create tests suites that satisfy an intra-class data-flow coverage criterion which is highly relevant for object orientation, although little addressed or achieved by tools in practice. We show that our approach can be used on real object-oriented software and that the technique for guiding test generation produces an increase in coverage.
指导类内数据流覆盖的随机测试生成
自动生成一个好的测试套件是很困难的,特别是对于面向对象的软件。反馈导向的随机测试生成是一种可以实现良好分支覆盖的方法,并且已经被用作系统地构建套件以测试实际Java程序的基础。我们扩展了这种随机测试生成方法,以创建满足类内数据流覆盖标准的测试套件,该标准与面向对象高度相关,尽管在实践中很少被工具处理或实现。我们展示了我们的方法可以用于真正的面向对象的软件,并且指导测试生成的技术产生了覆盖率的增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信