{"title":"Robotic Autonomous Grasping Technique: A Survey","authors":"Lili Wang, Zhen Zhang, Jianhua Su, Qipeng Gu","doi":"10.1109/acait53529.2021.9731320","DOIUrl":null,"url":null,"abstract":"This paper provides a comprehensive survey of robotic autonomous grasping techniques. We summarize three key tasks: grasp detection, affordance detection, and model migration. Grasp detection determines the graspable area and grasping posture of the manipulator, so that the robot can successfully perform the grasps. The grasp detection methods based on deep learning are divided into 3DoF grasp and 6DoF grasp. The object affordances based grasping methods can further improve the robot's understanding of objects and environment, thereby improving the robot's intelligence and autonomy. Methods for object affordances detection are classified as learning-based, knowledge-based, and simulation-based. Model migration means that when the grasping model is migrated to other scenes where lightness and background changes, only little or no label data is required, so that the grasping model can be used in the target scene quickly and efficiently. This paper focuses on domain adaptation (DA) methods in model migration.","PeriodicalId":173633,"journal":{"name":"2021 5th Asian Conference on Artificial Intelligence Technology (ACAIT)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 5th Asian Conference on Artificial Intelligence Technology (ACAIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/acait53529.2021.9731320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper provides a comprehensive survey of robotic autonomous grasping techniques. We summarize three key tasks: grasp detection, affordance detection, and model migration. Grasp detection determines the graspable area and grasping posture of the manipulator, so that the robot can successfully perform the grasps. The grasp detection methods based on deep learning are divided into 3DoF grasp and 6DoF grasp. The object affordances based grasping methods can further improve the robot's understanding of objects and environment, thereby improving the robot's intelligence and autonomy. Methods for object affordances detection are classified as learning-based, knowledge-based, and simulation-based. Model migration means that when the grasping model is migrated to other scenes where lightness and background changes, only little or no label data is required, so that the grasping model can be used in the target scene quickly and efficiently. This paper focuses on domain adaptation (DA) methods in model migration.