Recursive Model for Dose-time Responses in Pharmacological Studies

Aminur Rahman, S. R. Dhruba, Souparno Ghosh, R. Pal
{"title":"Recursive Model for Dose-time Responses in Pharmacological Studies","authors":"Aminur Rahman, S. R. Dhruba, Souparno Ghosh, R. Pal","doi":"10.1145/3233547.3233681","DOIUrl":null,"url":null,"abstract":"Clinical studies often track dose-response curves of subjects over time. One can easily model dose-response curve at each time point with Hill equation, but such a model fails to capture the temporal evolution of curves. On the other hand, one can use Gompertz equation to model the dose-time curves at each time point without capturing the evolution of time curves across dosage. In this article, we propose a parametric model for dose-time responses that follows Gompertz law in time and approximately follows Hill equation across dose. We derive a recursion relation for dose-response curves over time capturing the temporal evolution. We then specify a regression model connecting the parameters controlling the dose-time responses with individual level proteomic data. The resultant joint model allows us to predict the dose-response curves over time for new individuals. We illustrate the superior performance of our proposed model as compared to the individual models using data from the HMS-LINCS database.","PeriodicalId":131906,"journal":{"name":"Proceedings of the 2018 ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3233547.3233681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Clinical studies often track dose-response curves of subjects over time. One can easily model dose-response curve at each time point with Hill equation, but such a model fails to capture the temporal evolution of curves. On the other hand, one can use Gompertz equation to model the dose-time curves at each time point without capturing the evolution of time curves across dosage. In this article, we propose a parametric model for dose-time responses that follows Gompertz law in time and approximately follows Hill equation across dose. We derive a recursion relation for dose-response curves over time capturing the temporal evolution. We then specify a regression model connecting the parameters controlling the dose-time responses with individual level proteomic data. The resultant joint model allows us to predict the dose-response curves over time for new individuals. We illustrate the superior performance of our proposed model as compared to the individual models using data from the HMS-LINCS database.
药理学研究中剂量-时间反应的递归模型
临床研究经常跟踪受试者的剂量-反应曲线。用Hill方程可以很容易地模拟每个时间点的剂量-反应曲线,但这种模型不能反映曲线的时间演变。另一方面,可以使用Gompertz方程来模拟每个时间点的剂量-时间曲线,而不必捕捉时间曲线在剂量上的演变。在本文中,我们提出了一个剂量-时间响应的参数模型,该模型在时间上遵循Gompertz定律,在剂量上近似遵循Hill方程。我们推导了剂量-响应曲线随时间的递推关系,捕捉了时间的演变。然后,我们指定了一个回归模型,将控制剂量-时间反应的参数与个体水平的蛋白质组学数据连接起来。由此产生的联合模型使我们能够预测新个体随时间的剂量-反应曲线。我们使用来自HMS-LINCS数据库的数据说明了我们提出的模型与单个模型相比的优越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信