Aminur Rahman, S. R. Dhruba, Souparno Ghosh, R. Pal
{"title":"Recursive Model for Dose-time Responses in Pharmacological Studies","authors":"Aminur Rahman, S. R. Dhruba, Souparno Ghosh, R. Pal","doi":"10.1145/3233547.3233681","DOIUrl":null,"url":null,"abstract":"Clinical studies often track dose-response curves of subjects over time. One can easily model dose-response curve at each time point with Hill equation, but such a model fails to capture the temporal evolution of curves. On the other hand, one can use Gompertz equation to model the dose-time curves at each time point without capturing the evolution of time curves across dosage. In this article, we propose a parametric model for dose-time responses that follows Gompertz law in time and approximately follows Hill equation across dose. We derive a recursion relation for dose-response curves over time capturing the temporal evolution. We then specify a regression model connecting the parameters controlling the dose-time responses with individual level proteomic data. The resultant joint model allows us to predict the dose-response curves over time for new individuals. We illustrate the superior performance of our proposed model as compared to the individual models using data from the HMS-LINCS database.","PeriodicalId":131906,"journal":{"name":"Proceedings of the 2018 ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3233547.3233681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Clinical studies often track dose-response curves of subjects over time. One can easily model dose-response curve at each time point with Hill equation, but such a model fails to capture the temporal evolution of curves. On the other hand, one can use Gompertz equation to model the dose-time curves at each time point without capturing the evolution of time curves across dosage. In this article, we propose a parametric model for dose-time responses that follows Gompertz law in time and approximately follows Hill equation across dose. We derive a recursion relation for dose-response curves over time capturing the temporal evolution. We then specify a regression model connecting the parameters controlling the dose-time responses with individual level proteomic data. The resultant joint model allows us to predict the dose-response curves over time for new individuals. We illustrate the superior performance of our proposed model as compared to the individual models using data from the HMS-LINCS database.