Network Attack Detection Using Machine Learning Methods

N. Zagorodna, Mariia Stadnyk, Borys Lypa, M. Gavrylov, R. Kozak
{"title":"Network Attack Detection Using Machine Learning Methods","authors":"N. Zagorodna, Mariia Stadnyk, Borys Lypa, M. Gavrylov, R. Kozak","doi":"10.47459/cndcgs.2022.7","DOIUrl":null,"url":null,"abstract":"This paper presents the result of the study of network intrusion detection using machine learning algorithms. The creation and training of such algorithms is seriously limited by the small number of actual datasets available for public access. The CSE-CIC-IDS2018 data set, used in research, includes 7 subsets of different attack scenarios. Each subset is labeled using a few subtypes of a given attack or normal behavior. That is why the problem of network attack detection has been considered a multiclassification problem. Some of the most popular classifiers will be tested on the chosen data set. Classification algorithms are developed using a standard Python programming environment and the specialized machine learning library Scikit-learn. In the paper, a comparative analysis of the results was performed based on the the application of Random Forest, XGBoost, LR, and MLP classifiers.","PeriodicalId":304895,"journal":{"name":"Challenges to national defence in contemporary geopolitical situation","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Challenges to national defence in contemporary geopolitical situation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47459/cndcgs.2022.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the result of the study of network intrusion detection using machine learning algorithms. The creation and training of such algorithms is seriously limited by the small number of actual datasets available for public access. The CSE-CIC-IDS2018 data set, used in research, includes 7 subsets of different attack scenarios. Each subset is labeled using a few subtypes of a given attack or normal behavior. That is why the problem of network attack detection has been considered a multiclassification problem. Some of the most popular classifiers will be tested on the chosen data set. Classification algorithms are developed using a standard Python programming environment and the specialized machine learning library Scikit-learn. In the paper, a comparative analysis of the results was performed based on the the application of Random Forest, XGBoost, LR, and MLP classifiers.
使用机器学习方法进行网络攻击检测
本文介绍了利用机器学习算法进行网络入侵检测的研究结果。这种算法的创建和训练受到可供公众访问的少量实际数据集的严重限制。研究中使用的CSE-CIC-IDS2018数据集包括7个不同攻击场景的子集。每个子集都使用给定攻击或正常行为的几个子类型进行标记。这就是为什么网络攻击检测问题被认为是一个多分类问题。一些最流行的分类器将在选定的数据集上进行测试。分类算法是使用标准Python编程环境和专门的机器学习库Scikit-learn开发的。本文基于随机森林、XGBoost、LR和MLP分类器的应用,对结果进行了对比分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信