Resident activity recognition in smart homes by using artificial neural networks

Homay Danaei Mehr, Hüseyin Polat, Aydın Çetin
{"title":"Resident activity recognition in smart homes by using artificial neural networks","authors":"Homay Danaei Mehr, Hüseyin Polat, Aydın Çetin","doi":"10.1109/SGCF.2016.7492428","DOIUrl":null,"url":null,"abstract":"Recognition and detection of human activity is one of the challenges in smart home technologies. In this paper, three algorithms of artificial neural networks, namely Quick Propagation (QP), Levenberg Marquardt (LM) and Batch Back Propagation (BBP), have been used for human activity recognition and compared according to performance on Massachusetts Institute of Technology (MIT) smart home dataset. The achieved results demonstrated that Levenberg Marquardt algorithm has better human activity recognition performance (by 92.81% accuracy) than Quick Propagation and Batch Back Propagation algorithms.","PeriodicalId":403426,"journal":{"name":"2016 4th International Istanbul Smart Grid Congress and Fair (ICSG)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"79","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 4th International Istanbul Smart Grid Congress and Fair (ICSG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SGCF.2016.7492428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 79

Abstract

Recognition and detection of human activity is one of the challenges in smart home technologies. In this paper, three algorithms of artificial neural networks, namely Quick Propagation (QP), Levenberg Marquardt (LM) and Batch Back Propagation (BBP), have been used for human activity recognition and compared according to performance on Massachusetts Institute of Technology (MIT) smart home dataset. The achieved results demonstrated that Levenberg Marquardt algorithm has better human activity recognition performance (by 92.81% accuracy) than Quick Propagation and Batch Back Propagation algorithms.
基于人工神经网络的智能家居居民活动识别
识别和检测人类活动是智能家居技术面临的挑战之一。本文将快速传播(QP)、Levenberg Marquardt (LM)和批处理反向传播(BBP)三种人工神经网络算法用于人类活动识别,并根据麻省理工学院(MIT)智能家居数据集的性能进行了比较。结果表明,Levenberg Marquardt算法比Quick Propagation和Batch Back Propagation算法具有更好的人体活动识别性能(准确率为92.81%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信