EGSA: Enhanced and Global Semantic Activation for Weakly Supervised Object Localization

Yin Liu, Lingyun Wang, Xin Xu, Xiaopeng Luo
{"title":"EGSA: Enhanced and Global Semantic Activation for Weakly Supervised Object Localization","authors":"Yin Liu, Lingyun Wang, Xin Xu, Xiaopeng Luo","doi":"10.1109/ICNSC55942.2022.10004147","DOIUrl":null,"url":null,"abstract":"Weakly supervised object localization(WSOL) is a task that only uses image-level supervision information to locate objects. Traditional CNN-based methods always locate the most discriminative regions of objects and cannot well balance the accuracy of classification and localization. To solve this problem, we propose an enhanced and global semantic activation(EGSA) method based on the vision transformer model. We first use an attention reassign module to get a comprehensive attention map that contains the correlation between each image patch and the global dependency of the class token. Then a mask selection module that generates a mask map by comparing with mask threshold is proposed to obtain the token feature map of the non-discriminative object region. By coupling the above two maps and combining it with a semantic aware map contains the information of class token, the final localization map with enhanced and global semantic activation can be built. And experiments on two common benchmark datasets CUB-200-2011 and ILSVRC demonstrate the efficiency of our method.","PeriodicalId":230499,"journal":{"name":"2022 IEEE International Conference on Networking, Sensing and Control (ICNSC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Networking, Sensing and Control (ICNSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNSC55942.2022.10004147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Weakly supervised object localization(WSOL) is a task that only uses image-level supervision information to locate objects. Traditional CNN-based methods always locate the most discriminative regions of objects and cannot well balance the accuracy of classification and localization. To solve this problem, we propose an enhanced and global semantic activation(EGSA) method based on the vision transformer model. We first use an attention reassign module to get a comprehensive attention map that contains the correlation between each image patch and the global dependency of the class token. Then a mask selection module that generates a mask map by comparing with mask threshold is proposed to obtain the token feature map of the non-discriminative object region. By coupling the above two maps and combining it with a semantic aware map contains the information of class token, the final localization map with enhanced and global semantic activation can be built. And experiments on two common benchmark datasets CUB-200-2011 and ILSVRC demonstrate the efficiency of our method.
弱监督对象定位的增强和全局语义激活
弱监督对象定位(WSOL)是一种仅使用图像级监督信息来定位对象的任务。传统的基于cnn的方法总是定位到目标最具判别性的区域,不能很好地平衡分类和定位的准确性。为了解决这一问题,我们提出了一种基于视觉转换模型的增强全局语义激活(EGSA)方法。我们首先使用一个注意力重新分配模块来获得一个全面的注意力地图,该地图包含每个图像补丁和类令牌的全局依赖性之间的相关性。在此基础上,提出了一个掩码选择模块,通过与掩码阈值的比较生成掩码映射,得到非判别目标区域的token特征映射。通过将上述两个地图耦合,并将其与包含类标记信息的语义感知地图相结合,可以构建具有增强和全局语义激活的最终定位地图。并在CUB-200-2011和ILSVRC两个常用基准数据集上进行了实验,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信