{"title":"Automated Chinese Essay Scoring using Pre-Trained Language Models","authors":"Lulu Dong, Lin Li, Hongchao Ma, Yeling Liang","doi":"10.5121/csit.2021.111901","DOIUrl":null,"url":null,"abstract":"Automated Essay Scoring (AES) aims to assign a proper score to an essay written by a given prompt, which is a significant application of Natural Language Processing (NLP) in the education area. In this work, we focus on solving the Chinese AES problem by Pre-trained Language Models (PLMs) including state-of-the-art PLMs BERT and ERNIE. A Chinese essay dataset has been built up in this work, by which we conduct extensive AES experiments. Our PLMs-based AES models acquire 68.70% in Quadratic Weighted Kappa (QWK), which outperform classic feature-based linear regression AES model. The results show that our methods effectively alleviate the dependence on manual features and improve the portability of AES models. Furthermore, we acquire well-performed AES models with a limited scale of the dataset, which solves the lack of datasets in Chinese AES.","PeriodicalId":193651,"journal":{"name":"NLP Techniques and Applications","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NLP Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/csit.2021.111901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Automated Essay Scoring (AES) aims to assign a proper score to an essay written by a given prompt, which is a significant application of Natural Language Processing (NLP) in the education area. In this work, we focus on solving the Chinese AES problem by Pre-trained Language Models (PLMs) including state-of-the-art PLMs BERT and ERNIE. A Chinese essay dataset has been built up in this work, by which we conduct extensive AES experiments. Our PLMs-based AES models acquire 68.70% in Quadratic Weighted Kappa (QWK), which outperform classic feature-based linear regression AES model. The results show that our methods effectively alleviate the dependence on manual features and improve the portability of AES models. Furthermore, we acquire well-performed AES models with a limited scale of the dataset, which solves the lack of datasets in Chinese AES.