Tools and Visualizations for Exploring Classification Landscapes

William Powers, Lin Shi, L. Liebovitch
{"title":"Tools and Visualizations for Exploring Classification Landscapes","authors":"William Powers, Lin Shi, L. Liebovitch","doi":"10.1109/CISS56502.2023.10089673","DOIUrl":null,"url":null,"abstract":"Neural networks and deep learning systems find the correct classification of input data by locating the corresponding local minima in the hyper-dimensional, classification landscape. An increasing number of adversarial examples have now shown that these networks sometimes find an unexpected and incorrect minimum and so make an incorrect classification. To understand those results requires a better understanding of the nature of these classification landscapes. Previous studies have explored the properties of the landscape of back propagation in training these networks. In our studies here, we explore the classification landscape of already trained networks. We present some novel procedures and analytical tools to study the classification land-scape and visualizations to meaningfully represent those results. We apply these methods to study the classification landscape in classic examples, including image classification in the MNIST data set and flower classification from numerical feature values in the Iris data set.","PeriodicalId":243775,"journal":{"name":"2023 57th Annual Conference on Information Sciences and Systems (CISS)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 57th Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS56502.2023.10089673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Neural networks and deep learning systems find the correct classification of input data by locating the corresponding local minima in the hyper-dimensional, classification landscape. An increasing number of adversarial examples have now shown that these networks sometimes find an unexpected and incorrect minimum and so make an incorrect classification. To understand those results requires a better understanding of the nature of these classification landscapes. Previous studies have explored the properties of the landscape of back propagation in training these networks. In our studies here, we explore the classification landscape of already trained networks. We present some novel procedures and analytical tools to study the classification land-scape and visualizations to meaningfully represent those results. We apply these methods to study the classification landscape in classic examples, including image classification in the MNIST data set and flower classification from numerical feature values in the Iris data set.
探索分类景观的工具和可视化
神经网络和深度学习系统通过在超维分类环境中定位相应的局部最小值来找到输入数据的正确分类。越来越多的对抗性例子表明,这些网络有时会找到一个意想不到的、不正确的最小值,从而做出不正确的分类。要理解这些结果,需要更好地理解这些分类景观的性质。以前的研究已经在训练这些网络时探索了反向传播的性质。在我们的研究中,我们探索了已经训练好的网络的分类情况。我们提出了一些新的方法和分析工具来研究分类景观和可视化,以有意义地表达这些结果。我们将这些方法应用于经典示例的分类景观研究,包括MNIST数据集的图像分类和Iris数据集的数值特征值分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信