Distributed model predictive control for active power control of wind farm

Haoran Zhao, Qiuwei Wu, C. Rasmussen, Qinglai Guo, Hongbin Sun
{"title":"Distributed model predictive control for active power control of wind farm","authors":"Haoran Zhao, Qiuwei Wu, C. Rasmussen, Qinglai Guo, Hongbin Sun","doi":"10.1109/ISGTEUROPE.2014.7028925","DOIUrl":null,"url":null,"abstract":"This paper presents the active power control of a wind farm using the Distributed Model Predictive Controller (D-MPC) via dual decomposition. Different from the conventional centralized wind farm control, multiple objectives such as power reference tracking performance and wind turbine load can be considered to achieve a trade-off between them. Additionally, D-MPC is based on communication among the subsystems. Through the interaction among the neighboring subsystems, the global optimization could be achieved, which significantly reduces the computation burden. It is suitable for the modern large-scale wind farm control.","PeriodicalId":299515,"journal":{"name":"IEEE PES Innovative Smart Grid Technologies, Europe","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE PES Innovative Smart Grid Technologies, Europe","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGTEUROPE.2014.7028925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents the active power control of a wind farm using the Distributed Model Predictive Controller (D-MPC) via dual decomposition. Different from the conventional centralized wind farm control, multiple objectives such as power reference tracking performance and wind turbine load can be considered to achieve a trade-off between them. Additionally, D-MPC is based on communication among the subsystems. Through the interaction among the neighboring subsystems, the global optimization could be achieved, which significantly reduces the computation burden. It is suitable for the modern large-scale wind farm control.
风电场有功控制的分布式模型预测控制
本文提出了采用双分解的分布式模型预测控制器(D-MPC)对风电场的有功功率进行控制。与传统的集中式风电场控制不同,可以考虑功率参考跟踪性能和风力机负荷等多个目标,实现两者之间的权衡。此外,D-MPC基于子系统之间的通信。通过相邻子系统之间的相互作用,实现全局优化,大大减少了计算量。适用于现代大型风电场的控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信