A fuzzy region dissimilarity measure using feature space information

S. Makrogiannis, G. Economou, S. Fotopoulos
{"title":"A fuzzy region dissimilarity measure using feature space information","authors":"S. Makrogiannis, G. Economou, S. Fotopoulos","doi":"10.1109/ICDSP.2002.1028282","DOIUrl":null,"url":null,"abstract":"An inter-region color dissimilarity measure is proposed that utilizes the basic principles of region based segmentation and fuzzy clustering techniques. This method operates on the features associated to the initial image partitioning produced by watershed analysis. The subtractive clustering algorithm is employed to estimate the number of clusters and the fuzzy c-means classification method follows. The membership values assigned to each region along with a fuzzy (dis)similarity measure are used to estimate the cost between the regions. The process is completed using the shortest spanning tree merging algorithm. The proposed method is also compared to other related approaches.","PeriodicalId":351073,"journal":{"name":"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2002.1028282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

An inter-region color dissimilarity measure is proposed that utilizes the basic principles of region based segmentation and fuzzy clustering techniques. This method operates on the features associated to the initial image partitioning produced by watershed analysis. The subtractive clustering algorithm is employed to estimate the number of clusters and the fuzzy c-means classification method follows. The membership values assigned to each region along with a fuzzy (dis)similarity measure are used to estimate the cost between the regions. The process is completed using the shortest spanning tree merging algorithm. The proposed method is also compared to other related approaches.
基于特征空间信息的模糊区域不相似度量
利用区域分割和模糊聚类技术的基本原理,提出了一种区域间颜色不相似度度量方法。该方法对分水岭分析产生的初始图像分区相关的特征进行操作。采用减法聚类算法估计聚类数量,采用模糊c均值分类方法。分配给每个区域的隶属度值以及模糊(非)相似性度量用于估计区域之间的成本。该过程采用最短生成树归并算法完成。并与其他相关方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信