Performance modeling of parallel Magnetostatic Wave calculations on shared memory multicore

Reshmi Mitra, B. Joshi, A. Ravindran, R. Adams, A. Mukherjee, Jong-Ho Byun, Kushal Datta
{"title":"Performance modeling of parallel Magnetostatic Wave calculations on shared memory multicore","authors":"Reshmi Mitra, B. Joshi, A. Ravindran, R. Adams, A. Mukherjee, Jong-Ho Byun, Kushal Datta","doi":"10.1109/SECON.2010.5453902","DOIUrl":null,"url":null,"abstract":"The focus of this work is to identify data partitioning strategies and their performance models for memory intensive two dimensional Magneto-Static Wave (MSW) calculations for shared memory architecture. We have constructed computing, communication and synchronization time models for the different data partitioning schemes. We have identified that improved performance for any scheme can be achieved by reduced boundary sharing, decreasing stride penalties, reduced synchronization requirement and increased data sharing. A maximum speed-up of 3.9 for the largest data size is observed for one — dimensional partitioning.","PeriodicalId":286940,"journal":{"name":"Proceedings of the IEEE SoutheastCon 2010 (SoutheastCon)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE SoutheastCon 2010 (SoutheastCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECON.2010.5453902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The focus of this work is to identify data partitioning strategies and their performance models for memory intensive two dimensional Magneto-Static Wave (MSW) calculations for shared memory architecture. We have constructed computing, communication and synchronization time models for the different data partitioning schemes. We have identified that improved performance for any scheme can be achieved by reduced boundary sharing, decreasing stride penalties, reduced synchronization requirement and increased data sharing. A maximum speed-up of 3.9 for the largest data size is observed for one — dimensional partitioning.
共享内存多核并行静磁波计算的性能建模
本工作的重点是确定共享内存架构中内存密集型二维静磁波(MSW)计算的数据分区策略及其性能模型。我们针对不同的数据分区方案建立了计算、通信和同步时间模型。我们已经确定,任何方案的性能改进都可以通过减少边界共享、减少跨步惩罚、减少同步需求和增加数据共享来实现。对于一维分区,最大数据量的最大速度提升为3.9。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信