Defuzzification based on fuzzy clustering

H. Genther, T. Runkler, M. Glesner
{"title":"Defuzzification based on fuzzy clustering","authors":"H. Genther, T. Runkler, M. Glesner","doi":"10.1109/FUZZY.1994.343943","DOIUrl":null,"url":null,"abstract":"We develop a modified fuzzy clustering algorithm for parametric defuzzification in fuzzy rule base systems. Using examples and basic defuzzification properties we compare defuzzification by clustering with the standard defuzzification methods COG (Center of Gravity) and MOM (Mean of Maxima). Concerning fuzzy sets with forbidden zones the new method proves to be superior. We present how heuristic preprocessing and quality measures are used for appropriate parameter selection.<<ETX>>","PeriodicalId":153967,"journal":{"name":"Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.1994.343943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

We develop a modified fuzzy clustering algorithm for parametric defuzzification in fuzzy rule base systems. Using examples and basic defuzzification properties we compare defuzzification by clustering with the standard defuzzification methods COG (Center of Gravity) and MOM (Mean of Maxima). Concerning fuzzy sets with forbidden zones the new method proves to be superior. We present how heuristic preprocessing and quality measures are used for appropriate parameter selection.<>
基于模糊聚类的去模糊化
提出了一种改进的模糊聚类算法,用于模糊规则库系统的参数去模糊化。通过实例和基本的去模糊化性质,我们将聚类去模糊化与标准的去模糊化方法COG(重心)和MOM(极大值均值)进行了比较。对于带有禁区的模糊集,新方法具有较好的优越性。我们介绍了如何使用启发式预处理和质量测量来进行适当的参数选择
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信