{"title":"SleepSense: Non-invasive sleep event recognition using an electromagnetic probe","authors":"Yan Zhuang, Chen Song, Aosen Wang, Feng Lin, Yiran Li, Changzhan Gu, Changzhi Li, Wenyao Xu","doi":"10.1109/BSN.2015.7299364","DOIUrl":null,"url":null,"abstract":"Sleep monitoring is receiving increased attention in the healthcare community, because the quality of sleep has a great impact on human health. Existing in-home sleep monitoring devices are either obtrusive to the user or cannot provide adequate sleep information. To this end, we present SleepSense, a contactless and low-cost sleep monitoring system for home use that can continuously detect the sleep event. Specifically, SleepSense consists of three parts: an electromagnetic probe, a robust automated radar demodulation module, and a signal processing framework for sleep event recognition, including on-bed movement, bed exit, and breathing event. We present a prototype of the SleepSense system, and perform a set of comprehensive experiments to evaluate the performance of sleep monitoring. Using a real-case evaluation, experimental results indicate that SleepSense can perform effective sleep event detection and recognition in practice.","PeriodicalId":447934,"journal":{"name":"2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2015.7299364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Sleep monitoring is receiving increased attention in the healthcare community, because the quality of sleep has a great impact on human health. Existing in-home sleep monitoring devices are either obtrusive to the user or cannot provide adequate sleep information. To this end, we present SleepSense, a contactless and low-cost sleep monitoring system for home use that can continuously detect the sleep event. Specifically, SleepSense consists of three parts: an electromagnetic probe, a robust automated radar demodulation module, and a signal processing framework for sleep event recognition, including on-bed movement, bed exit, and breathing event. We present a prototype of the SleepSense system, and perform a set of comprehensive experiments to evaluate the performance of sleep monitoring. Using a real-case evaluation, experimental results indicate that SleepSense can perform effective sleep event detection and recognition in practice.