SentReP: Sentiment Classification of Movie Reviews using Efficient Repetitive Pre-Processing

Asha S. Manek, R. Pallavi, Veena H. Bhat, P. D. Shenoy, M. Mohan, K. Venugopal, L. Patnaik
{"title":"SentReP: Sentiment Classification of Movie Reviews using Efficient Repetitive Pre-Processing","authors":"Asha S. Manek, R. Pallavi, Veena H. Bhat, P. D. Shenoy, M. Mohan, K. Venugopal, L. Patnaik","doi":"10.1109/TENCON.2013.6718944","DOIUrl":null,"url":null,"abstract":"Opinions are highly essential for decision making and popular among the internet users. People with malicious intentions tend to give fake reviews to encourage or degrade the products. Reviewing movies is gaining popularity among web users, at the same time cannot be trusted. In this work, we propose a model Sentiment Classification of Movie Reviews using Efficient Repetitive Pre-processing (SentReP) that is based on tested parameters and a focused pre-processing technique to classify opinions. Working on the Cornell Movie review data set, this work significantly proves the accuracy and effectiveness of SentReP across different volumes of data and when compared to other different prevailing approaches. Overall this approach is very efficient in analyzing sentiments of movie reviews.","PeriodicalId":425023,"journal":{"name":"2013 IEEE International Conference of IEEE Region 10 (TENCON 2013)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference of IEEE Region 10 (TENCON 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2013.6718944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Opinions are highly essential for decision making and popular among the internet users. People with malicious intentions tend to give fake reviews to encourage or degrade the products. Reviewing movies is gaining popularity among web users, at the same time cannot be trusted. In this work, we propose a model Sentiment Classification of Movie Reviews using Efficient Repetitive Pre-processing (SentReP) that is based on tested parameters and a focused pre-processing technique to classify opinions. Working on the Cornell Movie review data set, this work significantly proves the accuracy and effectiveness of SentReP across different volumes of data and when compared to other different prevailing approaches. Overall this approach is very efficient in analyzing sentiments of movie reviews.
基于高效重复预处理的电影评论情感分类
意见对决策非常重要,在互联网用户中很受欢迎。心怀恶意的人往往会给出虚假评论来鼓励或贬低产品。影评在网络用户中越来越受欢迎,同时也不可信。在这项工作中,我们提出了一个基于有效重复预处理(SentReP)的电影评论情感分类模型,该模型基于测试参数和集中预处理技术来对意见进行分类。在康奈尔电影评论数据集上,这项工作显著地证明了SentReP在不同数据量上的准确性和有效性,并与其他不同的流行方法进行了比较。总的来说,这种方法在分析电影评论的情绪方面非常有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信