Glucose Sensing Utilizing Complex-Valued Neural Networks

Yiqi Lv, X. Meng, Yong Luo, Yan Pei
{"title":"Glucose Sensing Utilizing Complex-Valued Neural Networks","authors":"Yiqi Lv, X. Meng, Yong Luo, Yan Pei","doi":"10.1145/3603781.3603845","DOIUrl":null,"url":null,"abstract":"This paper proposes a Complex-Valued Neural Network (CVNN) for glucose sensing in milli-meter wave (mmWave). Based on the propagation characteristics of millimeter wave in glucose medium, we obtain the S21 parameter of glucose with the concentration range of 0-300mg/dL in the 60–80 GHz frequency band by High Frequency Structure Simulator (HFSS) simulations. Then we combine the sensing model with a neural network to detect and predict the glucose concentration relying on the learning ability of the neural network. In the prediction of the concentration of unknown samples, the absolute error between the predicted value and the true value is within 5mg/dL, which confirms the ability of the proposed CVNN model.","PeriodicalId":391180,"journal":{"name":"Proceedings of the 2023 4th International Conference on Computing, Networks and Internet of Things","volume":"400 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 4th International Conference on Computing, Networks and Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3603781.3603845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a Complex-Valued Neural Network (CVNN) for glucose sensing in milli-meter wave (mmWave). Based on the propagation characteristics of millimeter wave in glucose medium, we obtain the S21 parameter of glucose with the concentration range of 0-300mg/dL in the 60–80 GHz frequency band by High Frequency Structure Simulator (HFSS) simulations. Then we combine the sensing model with a neural network to detect and predict the glucose concentration relying on the learning ability of the neural network. In the prediction of the concentration of unknown samples, the absolute error between the predicted value and the true value is within 5mg/dL, which confirms the ability of the proposed CVNN model.
利用复值神经网络的葡萄糖传感
本文提出了一种用于毫米波葡萄糖传感的复值神经网络(CVNN)。根据毫米波在葡萄糖介质中的传播特性,利用高频结构模拟器(High frequency Structure Simulator, HFSS)仿真得到了60-80 GHz频段浓度范围为0-300mg/dL的葡萄糖的S21参数。然后,我们将感知模型与神经网络相结合,依靠神经网络的学习能力来检测和预测葡萄糖浓度。在对未知样本浓度的预测中,预测值与真实值的绝对误差在5mg/dL以内,证实了所提出的CVNN模型的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信