{"title":"Fault Ride Through Technique for DFIG-based Wind Turbines Under Grid Three-phase Faults","authors":"Peter Makolo, J. Justo, F. Mwasilu, R. Zamora","doi":"10.1109/AUPEC.2018.8757926","DOIUrl":null,"url":null,"abstract":"In modern power systems with increasing penetration of wind turbines (WTs), improvement of low voltage ride through (LVRT) capability of WTs equipped with doubly-fed induction generators (DFIGs) is an important topic. Thus, this paper proposes an LVRT strategy and compares its performance with a widely used conventional LVRT strategy. The proposed strategy is designed with a capacitor connected in series with an inductor and both are connected in parallel to a resistor. This configuration is then connected to the ac side of the rotor side converter (RSC) via an R-L circuit. To validate the performance of the proposed scheme, three phase fault condition is simulated and analysed. Based on simulation results obtained in MATLAB/Simulink, there is significant improvement achieved in the stated objectives compared to the conventional LVRT scheme.","PeriodicalId":314530,"journal":{"name":"2018 Australasian Universities Power Engineering Conference (AUPEC)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Australasian Universities Power Engineering Conference (AUPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AUPEC.2018.8757926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
In modern power systems with increasing penetration of wind turbines (WTs), improvement of low voltage ride through (LVRT) capability of WTs equipped with doubly-fed induction generators (DFIGs) is an important topic. Thus, this paper proposes an LVRT strategy and compares its performance with a widely used conventional LVRT strategy. The proposed strategy is designed with a capacitor connected in series with an inductor and both are connected in parallel to a resistor. This configuration is then connected to the ac side of the rotor side converter (RSC) via an R-L circuit. To validate the performance of the proposed scheme, three phase fault condition is simulated and analysed. Based on simulation results obtained in MATLAB/Simulink, there is significant improvement achieved in the stated objectives compared to the conventional LVRT scheme.