S. M. Salamati, Cong-Sheng Huang, Bharat Balagopal, M. Chow
{"title":"Experimental battery monitoring system design for electric vehicle applications","authors":"S. M. Salamati, Cong-Sheng Huang, Bharat Balagopal, M. Chow","doi":"10.1109/IESES.2018.8349847","DOIUrl":null,"url":null,"abstract":"Li-ion batteries are considered as main energy sources for next generation of transportation systems. This paper presents a systematic way to design an efficient hardware testbed for Battery Monitoring System (BMS) applications in Electric Vehicle (EV) industry following the standard industrial communication protocol. The hardware testbed performs both the battery voltage/current data acquisition and the Co-Estimation algorithm. Co-Estimation is an electric circuit model based SOC estimation algorithm which takes model parameter variations into account. In this paper, the Co-Estimation algorithm is firstly discussed. A battery hardware testbed design is then elaborated, and reasons for selecting main components, including microcontroller and voltage/current sensors are explained. The performance of the hardware testbed is compared with MATLAB simulation result using the same Co-Estimation algorithm, showing similar performance between two different platforms: hardware testbed and software simulation.","PeriodicalId":146951,"journal":{"name":"2018 IEEE International Conference on Industrial Electronics for Sustainable Energy Systems (IESES)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Industrial Electronics for Sustainable Energy Systems (IESES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IESES.2018.8349847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Li-ion batteries are considered as main energy sources for next generation of transportation systems. This paper presents a systematic way to design an efficient hardware testbed for Battery Monitoring System (BMS) applications in Electric Vehicle (EV) industry following the standard industrial communication protocol. The hardware testbed performs both the battery voltage/current data acquisition and the Co-Estimation algorithm. Co-Estimation is an electric circuit model based SOC estimation algorithm which takes model parameter variations into account. In this paper, the Co-Estimation algorithm is firstly discussed. A battery hardware testbed design is then elaborated, and reasons for selecting main components, including microcontroller and voltage/current sensors are explained. The performance of the hardware testbed is compared with MATLAB simulation result using the same Co-Estimation algorithm, showing similar performance between two different platforms: hardware testbed and software simulation.