Human Identification Using Gait Skeletal Joint Distance Features

Md Wasiur Rahman, M. Gavrilova
{"title":"Human Identification Using Gait Skeletal Joint Distance Features","authors":"Md Wasiur Rahman, M. Gavrilova","doi":"10.4018/IJSSCI.2017100102","DOIUrl":null,"url":null,"abstract":"Gaitnotonlydefinesthewayapersonwalks,butalsoprovidesinsightsonanindividual’sdaily routine,mentalstateorevencognitivefunction.Theimportanceofincorporatingcognitivebehavior andanalysisinbiometricsystemshasbeennotedrecently.Inthisarticle,authorsdevelopabiometric securitysystemusinggait-basedskeletalinformationobtainedfromMicrosoftKinectv1sensor.The gaitcycleiscalculatedbydetectingthethreeconsecutivelocalminimabetweenthejointdistance ofleftandrightankles.Authorshaveutilizedthedistancefeaturevectorforeachofthejointswith respecttootherjointsinthegaitcycle.Aftermeanandvariancefeaturesareextractedfromthedistance featurevector,theKNNalgorithmisusedforclassificationpurpose.Theclassificationaccuracyofthe authors’approachis93.33%.Experimentalresultsshowthattheproposedapproachachievesbetter recognitionaccuracythenotherstate-of-the-artapproaches.Incorporatinggaitbiometricinasituation awarenesssystemforidentificationofamentalstateisoneofthefuturedirectionsofthisresearch. KeywoRDS Biometric System, Cognitive Function, Feature Distance Vector, Gait, Gait Cycle, K Nearest Neighbors (KNN), Kinect Sensor, Pattern Recognition","PeriodicalId":432255,"journal":{"name":"Int. J. Softw. Sci. Comput. Intell.","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Softw. Sci. Comput. Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJSSCI.2017100102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Gaitnotonlydefinesthewayapersonwalks,butalsoprovidesinsightsonanindividual’sdaily routine,mentalstateorevencognitivefunction.Theimportanceofincorporatingcognitivebehavior andanalysisinbiometricsystemshasbeennotedrecently.Inthisarticle,authorsdevelopabiometric securitysystemusinggait-basedskeletalinformationobtainedfromMicrosoftKinectv1sensor.The gaitcycleiscalculatedbydetectingthethreeconsecutivelocalminimabetweenthejointdistance ofleftandrightankles.Authorshaveutilizedthedistancefeaturevectorforeachofthejointswith respecttootherjointsinthegaitcycle.Aftermeanandvariancefeaturesareextractedfromthedistance featurevector,theKNNalgorithmisusedforclassificationpurpose.Theclassificationaccuracyofthe authors’approachis93.33%.Experimentalresultsshowthattheproposedapproachachievesbetter recognitionaccuracythenotherstate-of-the-artapproaches.Incorporatinggaitbiometricinasituation awarenesssystemforidentificationofamentalstateisoneofthefuturedirectionsofthisresearch. KeywoRDS Biometric System, Cognitive Function, Feature Distance Vector, Gait, Gait Cycle, K Nearest Neighbors (KNN), Kinect Sensor, Pattern Recognition
基于步态骨骼关节距离特征的人体识别
Gaitnotonlydefinesthewayapersonwalks,butalsoprovidesinsightsonanindividual 'sdaily routine,mentalstateorevencognitivefunction。Theimportanceofincorporatingcognitivebehavior andanalysisinbiometricsystemshasbeennotedrecently。Inthisarticle,authorsdevelopabiometric securitysystemusinggait-basedskeletalinformationobtainedfromMicrosoftKinectv1sensor。The gaitcycleiscalculatedbydetectingthethreeconsecutivelocalminimabetweenthejointdistance ofleftandrightankles。Authorshaveutilizedthedistancefeaturevectorforeachofthejointswith respecttootherjointsinthegaitcycle。Aftermeanandvariancefeaturesareextractedfromthedistance featurevector,theKNNalgorithmisusedforclassificationpurpose。Theclassificationaccuracyofthe作者approachis93.33%。Experimentalresultsshowthattheproposedapproachachievesbetter recognitionaccuracythenotherstate-of-the-artapproaches。Incorporatinggaitbiometricinasituation awarenesssystemforidentificationofamentalstateisoneofthefuturedirectionsofthisresearch。关键词:生物识别系统,认知功能,特征距离向量,步态,步态周期,K近邻,Kinect传感器,模式识别
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信