Challenges and Issues in Trajectory Streams Clustering upon a Sliding-Window Model

Jiali Mao, Cheqing Jin, Xiaoling Wang, Aoying Zhou
{"title":"Challenges and Issues in Trajectory Streams Clustering upon a Sliding-Window Model","authors":"Jiali Mao, Cheqing Jin, Xiaoling Wang, Aoying Zhou","doi":"10.1109/WISA.2015.42","DOIUrl":null,"url":null,"abstract":"The proliferation of location-acquisition devices and thriving development of social Web sites enable analyzing users' movement behaviors and detecting social events in dynamic trajectory streams. In this paper, we firstly analyze the challenges in trajectory stream clustering, and then depict a three-part framework to deal with this issue, that includes (i) trajectory data pre-processing for higher quality, (ii) online micro-clustering to summarize a large number of microclusters, and (iii) offline macro-clustering to form the resulting clusters. Particularly, we present the in-cluster maintenance strategy for online clustering evolving trajectory streams over sliding windows. It can eliminate the obsolete data while adaptively maintaining the summary statistics for continuously arriving location data, and thus avoid performance degradation with minimal harm to result quality.","PeriodicalId":198938,"journal":{"name":"2015 12th Web Information System and Application Conference (WISA)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 12th Web Information System and Application Conference (WISA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISA.2015.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The proliferation of location-acquisition devices and thriving development of social Web sites enable analyzing users' movement behaviors and detecting social events in dynamic trajectory streams. In this paper, we firstly analyze the challenges in trajectory stream clustering, and then depict a three-part framework to deal with this issue, that includes (i) trajectory data pre-processing for higher quality, (ii) online micro-clustering to summarize a large number of microclusters, and (iii) offline macro-clustering to form the resulting clusters. Particularly, we present the in-cluster maintenance strategy for online clustering evolving trajectory streams over sliding windows. It can eliminate the obsolete data while adaptively maintaining the summary statistics for continuously arriving location data, and thus avoid performance degradation with minimal harm to result quality.
基于滑动窗口模型的轨迹流聚类的挑战与问题
位置获取设备的激增和社交网站的蓬勃发展使得分析用户的移动行为和检测动态轨迹流中的社交事件成为可能。在本文中,我们首先分析了轨迹流聚类的挑战,然后描述了一个三部分框架来处理这一问题,包括(i)更高质量的轨迹数据预处理,(ii)在线微聚类来总结大量的微聚类,(iii)离线宏观聚类来形成最终的聚类。特别地,我们提出了滑动窗口在线聚类演化轨迹流的簇内维护策略。它可以消除过时的数据,同时自适应地维护连续到达的位置数据的汇总统计,从而避免性能下降,对结果质量的损害最小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信